Skip to main content

Advertisement

Log in

Clinical validity of detecting K-ras mutations for the diagnosis of exocrine pancreatic cancer: a prospective study in a clinically-relevant spectrum of patients

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The diagnostic utility of detecting K-ras mutations for the diagnosis of exocrine pancreatic cancer (EPC) has not been properly studied, and few reports have analysed a clinically relevant spectrum of patients. The objective was to evaluate the clinical validity of detecting K-ras mutations in the diagnosis of EPC in a large sample of clinically relevant patients. We prospectively identified 374 patients in whom one of the following diagnoses was suspected at hospital admission: EPC, chronic pancreatitis, pancreatic cysts, and cancer of the extrahepatic biliary system. Mutations in the K-ras oncogene were analysed by PCR and artificial RFLP in 212 patients. The sensitivity and specificity of the K-ras mutational status for the diagnosis of EPC were 77.7% (95% CI: 69.2–84.8) and 78.0% (68.1–86.0), respectively. The diagnostic accuracy was hardly modified by sex and age. In patients with either mutated K-ras or CEA > 5 ng/ml, the sensitivity and specificity were 81.0% (72.9–87.6) and 62.6% (72.9–87.6), respectively. In patients with mutated K-ras and CEA > 5 ng/ml the sensitivity was markedly reduced. In comparisons with a variety of non-EPC patient groups sensitivity and specificity were both always greater than 75%. In this clinically relevant sample of patients the sensitivity and specificity of K-ras mutations were not sufficiently high for independent diagnostic use. However, it seems premature to rule out the utility of K-ras analysis in conjunction with other genetic and ‘omics’ technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BPD:

Benign pancreatic disease

CEBS:

Cancer of the extra-hepatic biliary system

CI:

Confidence interval

CP:

Chronic pancreatitis

EPC:

Exocrine pancreatic cancer

ERCP:

Endoscopic retrograde cholangio-pancreatography

IQR:

Interquartile range

OBD:

Other benign disease

OM:

Other malignancy

OR:

Odds ratio

References

  1. Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7:163–72.

    Article  PubMed  CAS  Google Scholar 

  2. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.

    Article  PubMed  CAS  Google Scholar 

  3. Takhar AS, Palaniappan P, Dhingsa R, Lobo DN. Recent developments in diagnosis of pancreatic cancer. BMJ. 2004;329:668–73.

    Article  PubMed  Google Scholar 

  4. Porta M, Fabregat X, Malats N, Guarner L, Carrato A, de Miguel A, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol. 2005;7:189–97.

    Article  PubMed  Google Scholar 

  5. Duffy MJ, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klapdor R, et al. Tumor markers in pancreatic cancer: an European group on tumor markers (EGTM) status report. Ann Oncol. 2010;21:441–7.

    Article  PubMed  CAS  Google Scholar 

  6. Freelove R, Walling A. Pancreatic cancer: diagnosis and management. Am Fam Physician. 2006;73:485–92.

    PubMed  Google Scholar 

  7. Beger HG, Matsuno S, Cameron JL. Diseases of the pancreas: current surgical therapy. Berlin: Springer; 2008.

    Book  Google Scholar 

  8. von Hoff DD, Evans DB, Hruban RH, editors. Pancreatic cancer. Boston: Jones and Bartlett; 2005.

    Google Scholar 

  9. Howard JM, Idezuki Y, Ihse I, Prinz RA, editors. Surgical diseases of the pancreas. 3rd ed. Baltimore: Williams and Wilkins; 1998.

    Google Scholar 

  10. Beger HG, Warshaw AL, Büchler MW, Carr-Locke DL, Neoptolemos JP, Russell C, Sarr MG, editors. The pancreas. Vol. 2. Oxford: Blackwell; 1998.

    Google Scholar 

  11. Abraham SC, Wilentz RE, Yeo CJ, Sohn TA, Cameron JL, Boitnott JK, et al. Pancreaticoduodenectomy (Whipple resections) in patients without malignancy: are they all ‘chronic pancreatitis’? Am J Surg Pathol. 2003;27:110–20.

    Article  PubMed  Google Scholar 

  12. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1998;53:549–54.

    Article  Google Scholar 

  13. Tada M, Omata M, Ohto M. Clinical application of ras gene mutation for diagnosis of pancreatic adenocarcinoma. Gastroenterology. 1991;100:233–8.

    PubMed  CAS  Google Scholar 

  14. Parker LA, Lumbreras B, Hernández-Aguado I, Porta M. How useful is it clinically to analyse the K-ras mutational status for the diagnosis of exocrine pancreatic cancer? A systematic review and meta-analysis. Eur J Clin Invest. 2011 (in press).

  15. Marchese R, Muleti A, Pasqualetti P, Bucci B, Stigliano A, Brunetti E, et al. Low correspondance between K-ras mutations in pancreatic câncer tissue and detection of K-ras mutations in circulating DNA. Pancreas. 2006;32:171–7.

    Article  PubMed  CAS  Google Scholar 

  16. Wenger FA, Zieren J, Peter FJ, Jacobi CA, Müller JM. K-ras mutations in tissue and stool samples from patients with pancreatic cancer and chronic pancreatitis. Langenbecks Arch Surg. 1999;384:181–6.

    Article  PubMed  CAS  Google Scholar 

  17. Trümper L, Menges M, Daus H, Köhler D, Reinhard JO, Sackmann M, et al. Low sensitivity of the ki-ras polymerase chain reaction for diagnosing pancreatic cancer from pancreatic juice and bile: a multicenter prospective trial. J Clin Oncol. 2002;20:4331–7.

    Article  PubMed  Google Scholar 

  18. Liu TH, Wang ZY, Cui QC. Significance of the detection of Ki-ras codon 12 mutation in the diagnosis of pancreatic carcinoma. Int J Surgical Path. 1995;3:93–100.

    Google Scholar 

  19. Van Laethem JL, Vertongen P, Deviere J, Van Rampelbergh J, Rickaert F, Cremer M, Robberecht P. Detection of c-Ki-ras gene codon 12 mutations from pancreatic duct brushings in the diagnosis of pancreatic tumours. Gut. 1995;36:781–7.

    Article  PubMed  Google Scholar 

  20. Zheng M, Liu LX, Zhu AL, Qi SY, Jiang HC, Xiao ZY. K-ras gene mutation in the diagnosis of ultrasound guided fine-needle biopsy of pancreatic masses. World J Gastroenterol. 2003;9:188–91.

    PubMed  CAS  Google Scholar 

  21. Mora J, Puig P, Boadas J, Urgell E, Montserrat E, Lerma E, et al. K-ras gene mutations in the diagnosis of fine-needle aspirates of pancreatic masses: prospective study using two techniques with different detection limits. Clin Chem. 1998;44:2243–8.

    PubMed  CAS  Google Scholar 

  22. Shibata D, Almoguera C, Forrester K, Dunitz J, Martin SE, Cosgrove MM, et al. Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res. 1990;50:1279–83.

    PubMed  CAS  Google Scholar 

  23. Villanueva A, Reyes G, Cuatrecasas M, Martínez A, Erill N, Lerma E, et al. Diagnostic utility of K-ras mutations in fine-needle aspirates of pancreatic masses. Gastroenterology. 1996;110:1587–94.

    Article  PubMed  CAS  Google Scholar 

  24. Pugliese V, Pujic N, Saccomanno S, Gatteschi B, Pera C, Aste H, Ferrara GB, Nicolò G. Pancreatic intraductal sampling during ERCP in patients with chronic pancreatitis and pancreatic cancer: cytologic studies and k-ras-2 codon 12 molecular analysis in 47 cases. Gastrointest Endosc. 2001;54:595–9.

    Article  PubMed  CAS  Google Scholar 

  25. Van Laethem JL, Bourgeois V, Parma J, Delhaye M, Cochaux P, Velu T, et al. Relative contribution of Ki-ras gene analysis and brush cytology during ERCP for the diagnosis of biliary and pancreatic diseases. Gastrointest Endosc. 1998;47:479–85.

    Article  PubMed  Google Scholar 

  26. Parker LA, Gómez Saez N, Lumbreras B, Porta M, Hernández-Aguado I. Methodological deficits in diagnostic research using ‘-omics’ technologies: Evaluation of the QUADOMICS tool and quality of recently published studies. PLoS One. 2010;5(7):e11419.

    Article  PubMed  Google Scholar 

  27. Fletcher RH, Fletcher SW. Clinical epidemiology. The essentials. 4th ed. Philadelphia: Lippincott, Williams and Wilkins; 2005.

    Google Scholar 

  28. Haynes RB, Sackett DL, Guyatt GH, Tugwell P. Clinical epidemiology. How to do clinical practice research. 3rd ed. Philadelphia: Lippincott, Williams and Wilkins; 2005.

    Google Scholar 

  29. Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93:1054–61.

    Article  PubMed  CAS  Google Scholar 

  30. Porta M, ed. A dictionary of epidemiology. 5th ed. New York: Oxford University Press; 2008. p. 66, 69, 191, 201, 227, 233–6, 255, 258.

  31. Porta M, Malats N, Jariod M, Grimalt JO, Rifà J, Carrato A, et al. Serum concentrations of organochlorine compounds and K-ras mutations in exocrine pancreatic cancer. Lancet. 1999;354:2125–9.

    Article  PubMed  CAS  Google Scholar 

  32. Soler M, Malats N, Porta M, Fernandez E, Guarner L, Maguire A, et al. Medical conditions in patients with pancreatic and biliary diseases: validity and agreement between data from questionnaires and medical records. Dig Dis Sci. 1999;44:2469–77.

    Article  PubMed  CAS  Google Scholar 

  33. Porta M, Costafreda S, Malats N, Guarner L, Soler M, Gubern JM, et al. Validity of the hospital discharge diagnosis in epidemiologic studies of biliopancreatic pathology. Eur J Epidemiol. 2000;16:533–41.

    Article  PubMed  CAS  Google Scholar 

  34. Porta M, Malats N, Alguacil J, Ruiz L, Jariod M, Carrato A, et al. Coffee, pancreatic cancer, and K-ras mutations: updating the research agenda. J Epidemiol Community Health. 2000;54:656–9.

    Article  PubMed  CAS  Google Scholar 

  35. Real FX, Malats N, Lesca G, Porta M, Chopin S, Lenoir GM, et al. Family history of cancer and germline BRCA2 mutations in sporadic exocrine pancreas cancer. Gut. 2002;50:653–7.

    Article  PubMed  CAS  Google Scholar 

  36. Alguacil J, Porta M, Malats N, Kauppinen T, Kogevinas M, Benavides FG, et al. Occupational exposure to organic solvents and K-ras mutations in exocrine pancreatic cancer. Carcinogenesis. 2002;23:101–6.

    Article  PubMed  CAS  Google Scholar 

  37. Morales E, Porta M, Vioque J, López T, Mendez MA, Pumarega JA, et al. Food and nutrient intakes and K-ras mutations in exocrine pancreatic cancer. J Epidemiol Community Health. 2007;61:641–9.

    Article  PubMed  Google Scholar 

  38. Crous-Bou M, De Vivo I, Porta M, Pumarega JA, López T, Alguacil J, et al. CYP1B1 polymorphisms and K-ras mutations in patients with pancreatic ductal adenocarcinoma. Dig Dis Sci. 2008;53:1417–21.

    Article  PubMed  CAS  Google Scholar 

  39. Crous-Bou M, Porta M, López T, Jariod M, Malats N, Alguacil J, et al. Lifetime history of tobacco consumption and K-ras mutations in exocrine pancreatic cancer. Pancreas. 2007;35:135–41.

    Article  PubMed  CAS  Google Scholar 

  40. Crous-Bou M, Porta M, López T, Jariod M, Malats N, Morales E, et al. Lifetime history of alcohol consumption and K-ras mutations in pancreatic ductal adenocarcinoma. Environ Mol Mutagen. 2009;50:421–30.

    Article  PubMed  CAS  Google Scholar 

  41. Crous-Bou M, Porta M, Morales E, López T, Carrato A, Puigdomènech E, et al. Past medical conditions and K-ras mutations in pancreatic ductal adenocarcinoma: a hypothesis-generating study. Cancer Causes Control. 2009;20:591–9.

    Article  PubMed  Google Scholar 

  42. Porta M, López T, Pumarega J, Jariod M, Crous-Bou M, Marco E, et al. In pancreatic ductal adenocarcinoma blood concentrations of some organochlorine compounds and coffee intake are independently associated with KRAS mutations. Mutagenesis. 2009;24:513–21.

    Article  PubMed  CAS  Google Scholar 

  43. Gasull M, Porta M, Pumarega J, Vioque J, Bosch de Basea M, Puigdomènech E, et al. The relative influence of diet and serum concentrations of organochlorine compounds on K-ras mutations in exocrine pancreatic cancer. Chemosphere. 2010;79:686–97.

    Article  PubMed  CAS  Google Scholar 

  44. Crous-Bou M. Clinical and environmental influences on the prevalence of mutations in the K-ras oncogene in patients with pancreatic ductal adenocarcinoma. Doctoral dissertation [Dir.: Porta M], Universitat Autònoma de Barcelona, Barcelona, Spain; 2009. (http://www.imim.es/programesrecerca/epidemiologia/en_documentsgrecm.html [accessed 23 Nov 2010].

  45. Porta M, Pumarega J, López T, Jariod M, Marco E, Grimalt JO. Influence of tumor stage, symptoms and time of blood draw on serum concentrations of organochlorine compounds in exocrine pancreatic cancer. Cancer Causes Control. 2009;20:1893–906.

    Article  PubMed  Google Scholar 

  46. Porta M, Ferrer-Armengou O, Pumarega J, López T, Crous-Bou M, Alguacil A, et al. Exocrine pancreatic cancer clinical factors were related to timing of blood extraction and influenced serum concentrations of lipids. J Clin Epidemiol. 2008;61:695–704.

    Article  PubMed  Google Scholar 

  47. Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. 4th ed. Blackwell: Oxford; 2002.

    Book  Google Scholar 

  48. Porta M, Pumarega J, Ferrer-Armengou O, López T, Alguacil J, Malats N, et al. Timing of blood extraction in epidemiologic and proteomic studies: results and proposals from the PANKRAS II Study. Eur J Epidemiol. 2007;22:577–88.

    Article  PubMed  Google Scholar 

  49. Gudjonsson B. Pancreatic cancer: survival, errors and evidence. Eur J Gastroenterol Hepatol. 2009;21:1379–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by research grants from the Government of Catalonia (2009 SGR 1350, CIRIT 1999 SGR 00241 and 1998/BEAi400011); CIBER de Epidemiología y Salud Pública (CIBERESP), ‘Red temática de investigación cooperativa de centros en cáncer’ (C03/10), ‘Red temática de investigación cooperativa de centros en Epidemiología y salud pública’ (C03/09), and Fondo de Investigación Sanitaria (91/595, 92/0007, 95/0017 and 97/1138), Instituto de Salud Carlos III, Madrid, Government of Spain. The authors gratefully acknowledge scientific and technical assistance provided by Antonio Salas, Montserrat Andreu, Josep Lluís Piñol, Angels Serrat, David J. MacFarlane, Laura Ruiz, Elisabeth Carrillo, José Pumarega, Marta Crous-Bou, Leo Español, Puri Barbas and Yolanda Rovira.

Conflict of interest

The authors declare they have no competing financial interests nor other conflicts of interest. The study sponsors had no role and no involvement in the study design, nor in the collection, analysis, and interpretation of data; they also had no role and no involvement in the writing of the report, nor in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Porta.

Additional information

For the PANKRAS II Study Group: Members of the Multicentre Prospective Study on the Role of the K-ras and other Genetic Alterations in the Diagnosis, Prognosis and Etiology of Pancreatic and Biliary Diseases (PANKRAS II) Study Group are mentioned in previous publications.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 393 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, L.A., Porta, M., Lumbreras, B. et al. Clinical validity of detecting K-ras mutations for the diagnosis of exocrine pancreatic cancer: a prospective study in a clinically-relevant spectrum of patients. Eur J Epidemiol 26, 229–236 (2011). https://doi.org/10.1007/s10654-011-9547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-011-9547-8

Keywords

Navigation