Skip to main content
Log in

Cystatin C estimated renal dysfunction predicts T wave axis deviation in US adults: results from NHANES III

  • Cardiovascular Disease
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Patients with impaired kidney function are at increased risk of ventricular arrhythmia and sudden death. The association between chronic kidney disease and frontal T wave axis deviation, a cardiovascular risk factor, in individuals without heart disease is unexplored and unknown. To test the hypothesis that chronic kidney disease predicts frontal T-wave axis deviation, American participants 40 years of age or older from NHANES III, were categorized as having and not having chronic kidney disease based on glomerular filtration rates estimated by both serum cystatin C and serum creatinine and serum creatinine alone. Frontal T-wave axis deviation was measured from the standard 12-lead electrocardiogram. Multivariable adjustments for age, ace, smoking, metabolic syndrome, albuminuria, left ventricular mass, QRS duration and heart rate were performed. In multivariable weighted regression analysis, the odds ratio for abnormal frontal T wave axis deviations and their corresponding 95% CIs in patients with decreased glomerular filtration rate determined by an equation included cystatin and creatinine was 1.90 (1.20–3.32). The odds ratio of frontal T wave axis deviation due to decreased kidney function, determined using an equation included serum creatinine alone, was 1.65 (1.10–2.90). This study suggests that abnormal frontal T wave axis deviation abnormalities occur in subjects with chronic kidney disease. Those with decline in renal function should be considered at risk for potentially serious T-wave associated arrhythmias and thus carefully monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prevalence of chronic kidney disease and associated risk factors–United States, 1999-2004. MMWR Morb Mortal Wkly Rep. 2007;56(8):161–5.

  2. US Renal Data System. USRDS 2004 annual data report. Atlas of end-stage renal disease in the United States. In: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda. Available from URL: http://www.usrds.org/atlas_2004.htm.

  3. Schoolwerth AC, Engelgau MM, Hostetter TH, et al. Chronic kidney disease: a public health problem that needs a public health action plan. Prev Chronic Dis. 2006;3(2):A57.

    Google Scholar 

  4. Grossmann R, Thelemann A, Albert FW, et al. Ventricular cardiac arrhythmia in patients with terminal renal failure and chronic dialysis. Med Klin (Munich). 1988;83(22):735–9.

    CAS  Google Scholar 

  5. Switalski M, Kepka A, Galewicz M, et al. Ventricular arrhythmia in patients with chronic renal failure treated with hemodialysis. Pol Arch Med Wewn. 2000;104(4):703–8.

    CAS  PubMed  Google Scholar 

  6. London GM. Cardiovascular disease in chronic renal failure: pathophysiologic aspects. Semin Dial. 2003;16(2):85–94.

    Google Scholar 

  7. Glassock RJ, Pecoits-Filho R. Barberato SH: left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S79–91.

    Article  PubMed  Google Scholar 

  8. Reis SE, Olson MB, Fried L, et al. Mild renal insufficiency is associated with angiographic coronary artery disease in women. Circulation. 2002;105(24):2826–9.

    Article  PubMed  Google Scholar 

  9. Josephs W, Odenthal HJ. Cardiac manifestations of terminal kidney insufficiency. Current characterization of uremic cardiomyopathy. Dtsch Med Wochenschr. 1995;120(5):141–4.

    Article  CAS  PubMed  Google Scholar 

  10. Cardoso C, Salles G. QT-interval parameters in end-stage renal disease–is cardiovascular autonomic neuropathy unimportant? Clin Auton Res. 2004;14(4):214–6.

    Article  PubMed  Google Scholar 

  11. Faramawi MF, Sall M, Abdul Kareem MY. The association of the metabolic syndrome with T-wave axis deviation in NHANES III. Ann Epidemiol. 2008;18(9):702–7.

    Article  PubMed  Google Scholar 

  12. Zabel M, Malik M, Hnatkova K, et al. Analysis of T-wave morphology from the 12-lead electrocardiogram for prediction of long-term prognosis in male US veterans. Circulation. 2002;105(9):1066–70.

    Article  PubMed  Google Scholar 

  13. Alagiakrishnan K, Beitel JD, Graham MM, et al. Relation of T-axis abnormalities to coronary artery disease and survival after cardiac catheterization. Am J Cardiol. 2005;96(5):639–42.

    Article  PubMed  Google Scholar 

  14. de Torbal A, Kors JA, van Herpen G, et al. The electrical T-axis and the spatial QRS-T angle are independent predictors of long-term mortality in patients admitted with acute ischemic chest pain. Cardiology. 2004;101(4):199–207.

    Article  PubMed  Google Scholar 

  15. Kors JA, de Bruyne MC, Hoes AW, et al. T axis as an indicator of risk of cardiac events in elderly people. Lancet. 1998;352(9128):601–5.

    Article  CAS  PubMed  Google Scholar 

  16. Rautaharju PM, Nelson JC, Kronmal RA, et al. Usefulness of T-axis deviation as an independent risk indicator for incident cardiac events in older men and women free from coronary heart disease (the Cardiovascular Health Study). Am J Cardiol. 2001;88(2):118–23.

    Article  CAS  PubMed  Google Scholar 

  17. Shlipak MG, Katz R, Sarnak MJ, et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Ann Intern Med. 2006;145(4):237–46.

    CAS  PubMed  Google Scholar 

  18. Selvin E, Manzi J, Stevens LA, et al. Calibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988–1994, 1999–2004. Am J Kidney Dis. 2007;50(6):918–26.

    Article  CAS  PubMed  Google Scholar 

  19. Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3, 418 individuals with CKD. Am J Kidney Dis. 2008;51(3):395–406.

    Article  CAS  PubMed  Google Scholar 

  20. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.

    CAS  PubMed  Google Scholar 

  21. Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Int. Med. 2003;139(2):137–47.

    PubMed  Google Scholar 

  22. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  23. Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem. 2002;48(5):699–707.

    CAS  PubMed  Google Scholar 

  24. Reese PP, Feldman HI. More evidence that cystatin C predicts mortality better than creatinine. J Am Soc Nephrol. 2009;20(10):2088–90.

    Article  CAS  PubMed  Google Scholar 

  25. Keller T, Messow CM, Lubos E, et al. Cystatin C and cardiovascular mortality in patients with coronary artery disease and normal or mildly reduced kidney function: results from the AtheroGene study. Eur Heart J. 2009;30(3):314–20.

    Article  CAS  PubMed  Google Scholar 

  26. Shlipak MG, Wassel Fyr CL, Chertow GM, et al. Cystatin C and mortality risk in the elderly: the health, aging, and body composition study. J Am Soc Nephrol. 2006;17(1):254–61.

    Article  CAS  PubMed  Google Scholar 

  27. Astor BC, Levey AS, Stevens LA, et al. Method of glomerular filtration rate estimation affects prediction of mortality risk. J Am Soc Nephrol. 2009;20(10):2214–22.

    Article  PubMed  Google Scholar 

  28. Ikizler TA. Epidemiology of vascular disease in renal failure. Blood Purif 2002;20(1):6–10.

    Google Scholar 

  29. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340(2):115–26.

    Google Scholar 

  30. Covic A, Diaconita M, Gusbeth-Tatomir P, et al. Haemodialysis increases QT(c) interval but not QT(c) dispersion in ESRD patients without manifest cardiac disease. Nephrol Dial Transplant. 2002;17(12):2170–7.

    Article  CAS  PubMed  Google Scholar 

  31. Howse M, Sastry S, Bell GM. Changes in the corrected QT interval and corrected QT dispersion during haemodialysis. Postgrad Med J. 2002;78(919):273–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kirvela M, Yli-Hankala A, Lindgren L. QT dispersion and autonomic function in diabetic and non-diabetic patients with renal failure. Br J Anaesth. 1994;73(6):801–4.

    Article  CAS  PubMed  Google Scholar 

  33. Lorincz I, Matyus J, Zilahi Z, et al. QT dispersion in patients with end-stage renal failure and during hemodialysis. J Am Soc Nephrol. 1999;10(6):1297–302.

    CAS  PubMed  Google Scholar 

  34. Stewart GA, Gansevoort RT, Mark PB, et al. Electrocardiographic abnormalities and uremic cardiomyopathy. Kidney Int. 2005;67(1):217–26.

    Article  PubMed  Google Scholar 

  35. Malik M, Batchvarov VN. Measurement, interpretation and clinical potential of QT dispersion. J Am Coll Cardiol. 2000;36(6):1749–66.

    Article  CAS  PubMed  Google Scholar 

  36. Salles GF, Xavier SS, Sousa AS, et al. T-wave axis deviation as an independent predictor of mortality in chronic Chagas’ disease. Am J Cardiol. 2004;93(9):1136–40.

    Article  PubMed  Google Scholar 

  37. Haapanen N, Miilunpalo S, Pasanen M, et al. Agreement between questionnaire data and medical records of chronic diseases in middle-aged and elderly Finnish men and women. Am J Epidemiol. 1997;145(8):762–9.

    CAS  PubMed  Google Scholar 

  38. Tretli S, Lund-Larsen PG, Foss OP. Reliability of questionnaire information on cardiovascular disease and diabetes: cardiovascular disease study in Finnmark county. J Epidemiol Community Health. 1982;36(4):269–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed F. Faramawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faramawi, M.F., Caffrey, J.L., Amanzadeh, J. et al. Cystatin C estimated renal dysfunction predicts T wave axis deviation in US adults: results from NHANES III. Eur J Epidemiol 26, 101–107 (2011). https://doi.org/10.1007/s10654-010-9534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-010-9534-5

Keywords

Navigation