Skip to main content
Log in

Genetic determinants of serum lipid levels in Chinese subjects: a population-based study in Shanghai, China

  • GENETIC EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

We examined the associations between 21 single nucleotide polymorphisms (SNPs) of eight lipid metabolism genes and lipid levels in a Chinese population. This study was conducted as part of a population-based study in China with 799 randomly selected healthy residents who provided fasting blood and an in-person interview. Associations between variants and mean lipid levels were examined using a test of trend and least squares mean test in a general linear model. Four SNPs were associated with lipid levels: LDLR rs1003723 was associated with total cholesterol (P-trend = 0.002) and LDL (P-trend = 0.01), LDLR rs6413503 was associated with total cholesterol (P-trend = 0.05), APOB rs1367117 was associated with apoB (P-trend = 0.02), and ABCB11 rs49550 was associated with total cholesterol (P-trend = 0.01), triglycerides (P-trend = 0.01), and apoA (P-trend = 0.01). We found statistically significant effects on lipid levels for LDLR rs6413503 among those with high dairy intake, LPL rs263 among those with high allium vegetable intake, and APOE rs440446 among those with high red meat intake. We identified new associations between SNPs and lipid levels in Chinese previously found in Caucasians. These findings provide insight into the role of lipid metabolism genes, as well as the mechanisms by which these genes may be linked with disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60:329–39.

    Article  CAS  PubMed  Google Scholar 

  2. Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356, 222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 1986;256:2823–8.

    Article  CAS  PubMed  Google Scholar 

  3. Wuermli L, Joerger M, Henz S, et al. Hypertriglyceridemia as a possible risk factor for prostate cancer. Prostate Cancer Prostatic Dis. 2005;8:316–20.

    Article  CAS  PubMed  Google Scholar 

  4. Ruixing Y, Fengping H, Shangling P, et al. Prevalence of hyperlipidemia and its risk factors for the middle-aged and elderly in the Guangxi Hei Yi Zhuang and Han populations. J Investig Med. 2006;54:191–200.

    Article  PubMed  CAS  Google Scholar 

  5. Andreotti G, Chen J, Gao YT, et al. Serum lipid levels and the risk of biliary tract cancers and biliary stones: a population-based study in China. Int J Cancer. 2008;122:2322–9.

    Article  CAS  PubMed  Google Scholar 

  6. Heller DA, de Faire U, Pedersen NL, Dahlén G, McClearn GE. Genetic and environmental influences on serum lipid levels in twins. N Engl J Med. 1993;328:1150–6.

    Article  CAS  PubMed  Google Scholar 

  7. Report of the National Cholesterol Education Progran expert pancel on detection, evaluation and treatment of high blood cholesterol in adults. Arch Intern Med 1988;148:36–69.

    Google Scholar 

  8. Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.

    Article  CAS  PubMed  Google Scholar 

  9. Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sandhu MS, Waterworth DM, Debenham SL, et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet. 2008;371:483–91.

    Article  CAS  PubMed  Google Scholar 

  11. Linsel-Nitschke P, Götz A, Erdmann J, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease–a Mendelian Randomisation study. PLoS ONE. 2008;3:e2986.

    Article  PubMed  CAS  Google Scholar 

  12. Humphries SE, Kessling AM, Horsthemke B, et al. A common DNA polymorphism of the low-density lipoprotein (LDL) receptor gene and its use in diagnosis. Lancet. 1985;1:1003–5.

    Article  CAS  PubMed  Google Scholar 

  13. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Miranda J, Ordovas JM, Ostos MA, et al. Dietary fat clearance in normal subjects is modulated by genetic variation at the apolipoprotein B gene locus. Arterioscler Thromb Vasc Biol. 1997;17:1765–73.

    CAS  PubMed  Google Scholar 

  15. Pablos-Méndez A, Mayeux R, Ngai C, Shea S, Berglund L. Association of apo E polymorphism with plasma lipid levels in a multiethnic elderly population. Arterioscler Thromb Vasc Biol. 1997;17(12):3534–41.

    PubMed  Google Scholar 

  16. Aalto-Setala K, Palomaki H, Miettinen H, et al. Genetic risk factors and ischaemic cerebrovascular disease: role of common variation of the genes encoding apolipoproteins and angiotensin-converting enzyme. Ann Med. 1998;30:224–33.

    Article  CAS  PubMed  Google Scholar 

  17. Boekholdt SM, Peters RJ, Fountoulaki K, Kastelein JJ, Sijbrands EJ. Molecular variation at the apolipoprotein B gene locus in relation to lipids and cardiovascular disease: a systematic meta-analysis. Hum Genet. 2003;113:417–25.

    Article  CAS  PubMed  Google Scholar 

  18. Liao YC, Lin HF, Rundek T, et al. Multiple genetic determinants of plasma lipid levels in Caribbean Hispanics. Clin Biochem. 2008;41:306–12.

    Article  CAS  PubMed  Google Scholar 

  19. Andreotti G, Chen J, Gao YT, et al. Polymorphisms of genes in the lipid metabolism pathway and risk of biliary tract cancers and stones: a population-based case-control study in Shanghai, China. Cancer Epidemiol Biomarkers Prev. 2008;17:525–34.

    Article  CAS  PubMed  Google Scholar 

  20. Licastro F, Porcellini E, Caruso C, Lio D, Corder EH. Genetic risk profiles for Alzheimer’s disease: integration of APOE genotype and variants that up-regulate inflammation. Neurobiol Aging. 2007;28:1637–43.

    Article  CAS  PubMed  Google Scholar 

  21. Hsing AW, Bai Y, Andreotti G, et al. Family history of gallstones and the risk of biliary tract cancer and gallstones: a population-based study in Shanghai, China. Int J Cancer. 2007;121:832–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hsing AW, Gao YT, McGlynn KA, et al. Biliary tract cancer and stones in relation to chronic liver conditions: a population-based study in Shanghai, China. Int J Cancer. 2007;120:1981–5.

    Article  CAS  PubMed  Google Scholar 

  23. Sakoda LC, Gao YT, Chen BE, et al. Prostaglandin-endoperoxide synthase 2 (PTGS2) gene polymorphisms and risk of biliary tract cancer and gallstones: a population-based study in Shanghai, China. Carcinogenesis. 2006;27:1251–6.

    Article  CAS  PubMed  Google Scholar 

  24. Smith L, Lucas D, Lehnus G. Automated measurement of total cholesterol and triglycerides, in “tandem”, on the discrete sample analyzer, Gilford System 3500. Clin Chem. 1979;25:439–42.

    CAS  PubMed  Google Scholar 

  25. National Institutes of Health, National Heart, Lung, and Blood Institute. National Cholesterol Education Program, Recommendations on Lipoprotein Measurement from the Working Group on Lipoprotein Measurement. NIH Publication No.95-3044, September 1995, USA p. 103.

  26. Labeur C, Shepherd J, Rosseneu M. Immunological assays of apolipoproteins in plasma: methods and instrumentation. Clin Chem. 1990;36:591–7.

    CAS  PubMed  Google Scholar 

  27. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  PubMed  Google Scholar 

  28. Rifai N, Warnick GR, McNamara JR, Belcher JD, Grinstead GF, Frantz ID Jr. Measurement of low-density-lipoprotein cholesterol in serum: a status report. Clin Chem. 1992;38:150–60.

    CAS  PubMed  Google Scholar 

  29. Packer BR, Yeager M, Burdett L, et al. SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res. 2006;34(Database issue):D617–21.

    Article  CAS  PubMed  Google Scholar 

  30. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  PubMed  Google Scholar 

  31. Stephens M, Donnelly P. A comparison of Bayesian methods for haplotype reconstruction. Am J Hum Genet. 2003;73:1162–9.

    Article  CAS  PubMed  Google Scholar 

  32. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotypes reconstruction from population data. Am J Hum Genet. 2003;68:978–9.

    Article  Google Scholar 

  33. The International HapMap Consortium. The international hapmap project. Nature. 2003;426:789–96.

    Article  CAS  Google Scholar 

  34. Davis CL, Wang X, Snieder H, Treiber FA. Genetic and environmental determinants of lipid profile in black and white youth: a study of four candidate genes. Ethn Dis. 2005;15:568–77.

    PubMed  Google Scholar 

  35. Espirito Santo SM, Rensen PC, Goudriaan JR, et al. Triglyceride-rich lipoprotein metabolism in unique VLDL receptor, LDL receptor, and LRP triple-deficient mice. J Lipid Res. 2005;46:1097–102.

    Article  PubMed  CAS  Google Scholar 

  36. Tacken PJ, Teusink B, Jong MC, et al. LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J Lipid Res. 2000;41:2055–62.

    CAS  PubMed  Google Scholar 

  37. Brown MS, Goldstein JL. How LDL receptors influence cholesterol and atherosclerosis. Sci Am. 1984;251:58–66.

    Article  CAS  PubMed  Google Scholar 

  38. Pallaud C, Gueguen R, Sass C, et al. Genetic influences on lipid metabolism trait variability within the Stanislas Cohort. J Lipid Res. 2001;42:1879–90.

    CAS  PubMed  Google Scholar 

  39. Boland LL, Folsom AR, Boerwinkle E. Apolipoprotein E genotype and gallbladder disease risk in a large population-based cohort. Ann Epidemiol. 2006;16:763–9.

    Article  PubMed  Google Scholar 

  40. Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology. 2004;126:322–42.

    Article  CAS  PubMed  Google Scholar 

  41. Strautnieks SS, Bull LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20:233–8.

    Article  CAS  PubMed  Google Scholar 

  42. Noe J, Kullak-Ublick GA, Jochum W, et al. Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol. 2005;43:536–43.

    Article  CAS  PubMed  Google Scholar 

  43. Staels B, Kuipers F. Bile acid sequestrants and the treatment of type 2 diabetes mellitus. Drugs. 2007;67:1383–92.

    Article  CAS  PubMed  Google Scholar 

  44. Chen WM, Erdos MR, Jackson AU, et al. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest. 2008;118:2620–8.

    CAS  PubMed  Google Scholar 

  45. Heizmann C, Kirchgessner T, Kwiterovich PO, et al. DNA polymorphism haplotypes of the human lipoprotein lipase gene: possible association with high density lipoprotein levels. Hum Genet. 1991;86:578–84.

    Article  CAS  PubMed  Google Scholar 

  46. Merkel M, Eckel RH, Goldberg IJ. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res. 2002;43:1997–2006.

    Article  CAS  PubMed  Google Scholar 

  47. Emi M, Hata A, Robertson M, Iverius PH, Hegele R, Lalouel JM. Lipoprotein lipase deficiency resulting from a nonsense mutation in exon 3 of the lipoprotein lipase gene. Am J Hum Genet. 1990;47:107–11.

    CAS  PubMed  Google Scholar 

  48. Minnich A, Kessling A, Roy M, et al. Prevalence of alleles encoding defective lipoprotein lipase in hypertriglyceridemic patients of French Canadian descent. J Lipid Res. 1995;36:117–24.

    CAS  PubMed  Google Scholar 

  49. Tsutsumi K, Inoue Y, Shima A, Iwasaki K, Kawamura M, Murase T. The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J Clin Invest. 1993;92:411–7.

    Article  CAS  PubMed  Google Scholar 

  50. Yin W, Tsutsumi K. Lipoprotein lipase activator NO-1886. Cardiovasc Drug Rev. 2003;21:133–42.

    CAS  PubMed  Google Scholar 

  51. Yeh YY, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nut. 2001;131:989S–93S.

    CAS  Google Scholar 

  52. Qureshi AA, Abuirmeileh N, Din ZZ, Elson CE, Burger WC. Inhibition of cholesterol and fatty acid biosynthesis in liver enzymes and chicken hepatocytes by polar fractions of garlic. Lipids. 1983;18:343–8.

    Article  CAS  PubMed  Google Scholar 

  53. Yeh YY, Yeh SM. Garlic reduces plasma lipids by inhibiting hepatic cholesterol and triacylglycerol synthesis. Lipids. 1994;29:189–93.

    Article  CAS  PubMed  Google Scholar 

  54. Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD. Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am J Epidemiol. 1994;139:1–15.

    CAS  PubMed  Google Scholar 

  55. Le Marchand L, Hankin JH, Wilkens LR, Kolonel LN, Englyst HN, Lyu LC. Dietary fiber and colorectal cancer risk. Epidemiology. 1997;8:658–65.

    Article  CAS  PubMed  Google Scholar 

  56. Chasman DI, Kozlowski P, Zee RY, Kwiatkowski DJ, Ridker PM. Qualitative and quantitative effects of APOE genetic variation on plasma C-reactive protein, LDL-cholesterol, and apoE protein. Genes Immun. 2006;7:211–9.

    Article  CAS  PubMed  Google Scholar 

  57. Weisgraber KH, Innerarity TL, Mahley RW. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem. 1982;257:2518–21.

    CAS  PubMed  Google Scholar 

  58. Kowal RC, Herz J, Weisgraber KH, Mahley RW, Brown MS, Goldstein JL. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem. 1990;265:10771–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute; National Center on Minority Health, NIH; and Center to Reduce Cancer Disparities, NCI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Andreotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreotti, G., Menashe, I., Chen, J. et al. Genetic determinants of serum lipid levels in Chinese subjects: a population-based study in Shanghai, China. Eur J Epidemiol 24, 763–774 (2009). https://doi.org/10.1007/s10654-009-9402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9402-3

Keywords

Navigation