Skip to main content

Advertisement

Log in

Empirical Bayes and semi-Bayes adjustments for a vast number of estimations

  • METHODS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Investigators in modern molecular/genetic epidemiology studies commonly analyze data on a vast number of candidate genetic markers. In such situations, rather than conventional estimation of effects (odds ratios), more accurate estimation methods are needed. The author proposes consideration of empirical Bayes and semi-Bayes methods, which yield ‘adjustments for multiple estimations’ by shrinking conventional effect estimates towards the overall average effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

GWAS:

Genome-wide association study

MAF:

Minor allele frequency

OR:

Odds ratio (here, per-allele odds ratio predicted towards the minor allele)

SNP:

Single nucleotide polymorphism

T2D:

Type 2 diabetes

References

  1. Thomas DC, Clayton DG. Betting odds and genetic associations. J Natl Cancer Inst. 2004;96:421–3.

    PubMed  Google Scholar 

  2. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assesing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.

    Article  PubMed  Google Scholar 

  3. Moerkerke B, Goetghebeur E. Selecting “significant” differentially expressed genes from the combined perspective of the null and the alternative. J Comput Biol. 2006;13:1513–31.

    Article  CAS  PubMed  Google Scholar 

  4. Strug LJ, Hodge SE. An alternative foundation for the planning and evaluation of linkage studies. Hum Hered. 2006;61:166–88.

    Article  PubMed  Google Scholar 

  5. Wakefield JA. Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet. 2007;81:208–27.

    Article  CAS  PubMed  Google Scholar 

  6. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  CAS  Google Scholar 

  7. Strömberg U, Björk J, Vineis P, Broberg K, Zeggini E. Ranking of genome-wide associations scan signals by different measures. Int J Epidemiol. 2009;38:1364–73.

    Article  PubMed  Google Scholar 

  8. Garner C. Upward bias in odds ratio estimates from genome-wide association studies. Genet Epidemiol. 2007;31:288–95.

    Article  PubMed  Google Scholar 

  9. Ioannidis JPA. Why most discovered true associations are inflated. Epidemiology. 2008;19:640–8.

    Article  PubMed  Google Scholar 

  10. Kraft P. Curses—winner’s and otherwise—in genetic epidemiology. Epidemiology. 2008;19:649–51.

    Article  PubMed  Google Scholar 

  11. Zollner S, Pritchard JK. Overcoming the winner’s curse: estimating penetrance parameters from case–control data. Am J Hum Genet. 2007;80:605–15.

    Article  CAS  PubMed  Google Scholar 

  12. Yu K, Chatterjee N, Wheeler W, Li Q, Wang S, Rothman N, et al. Flexible designs for following up positive findings. Am J Hum Genet. 2007;81:540–51.

    Article  CAS  PubMed  Google Scholar 

  13. Zhong H, Prentice RL. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics. 2008;9:621–34.

    Article  PubMed  Google Scholar 

  14. Xiao R, Boehnke M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet Epidemiol. 2009;33:453–62

    Article  PubMed  Google Scholar 

  15. Sun L, Bull SB. Reduction of selection bias in genome-wide studies by resampling. Genet Epidemiol. 2005;28:352–67.

    Article  PubMed  Google Scholar 

  16. Gosh A, Zou F, Wright FA. Estimating odds ratios in genome scans: an approximate conditional likelihood approach. Am J Hum Genet. 2008;82:1064–74.

    Article  CAS  Google Scholar 

  17. Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J, et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet. 2008;4:e1000167.

    Article  PubMed  CAS  Google Scholar 

  18. Greenland S. Principles of multilevel modelling. Int J Epidemiol. 2000;29:158–67.

    Article  CAS  PubMed  Google Scholar 

  19. Morris CN. Parametric empirical Bayes inference: theory and applications. J Am Stat Assoc. 1983;78:47–55.

    Article  Google Scholar 

  20. Greenland S, Poole C. Empirical-Bayes and semi-Bayes approaches to occupational and environmental hazard surveillence. Arch Environ Health. 1994;49:9–16.

    CAS  PubMed  Google Scholar 

  21. Steenland K, Bray I, Greenland S, Boffetta P. Empirical Bayes adjustments for multiple results in hypothesis-generating or surveillance studies. Cancer Epidemiol Biomarkers Prev. 2000;9:895–903.

    CAS  PubMed  Google Scholar 

  22. Hung RJ, Brennan P, Malaveille C, Porru S, Donato F, Boffetta P, et al. Using hierarchical modeling in genetic association studies mith mutiple markers: application to a case–control study of bladder cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:1013–21.

    CAS  PubMed  Google Scholar 

  23. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.

    Article  CAS  PubMed  Google Scholar 

  24. Strömberg U, Björk J, Broberg K, Mertens F, Vineis P. Selection of influential genetic markers among a large number of candidates based on effect estimation rather than hypothesis testing: an approach for genome-wide association studies. Epidemiology. 2008;19:302–8.

    Article  PubMed  Google Scholar 

  25. McCarthy MI, Zeggini E. Genome-wide association studies in type 2 diabetes. Curr Diab Rep. 2009;9:164–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks associate professor Jonas Björk for work with the supplementary material. The Swedish Council for Working Life and Social Research and the Swedish Cancer Fund provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Strömberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strömberg, U. Empirical Bayes and semi-Bayes adjustments for a vast number of estimations. Eur J Epidemiol 24, 737–741 (2009). https://doi.org/10.1007/s10654-009-9393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9393-0

Keywords

Navigation