Skip to main content

Advertisement

Log in

The impact of unmeasured baseline effect modification on estimates from an inverse probability of treatment weighted logistic model

  • Methods
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

We present the results of a Monte Carlo simulation study in which we demonstrate how strong baseline interactions between a confounding variable and a treatment can create an important difference between the marginal effect of exposure on outcome (as estimated by an inverse probability of treatment weighted logistic model) and the conditional effect (as estimated by an adjusted logistic regression model). The scenarios that we explored included one with a rare outcome and a strong and prevalent effect measure modifier where, across 1,000 simulated data sets, the estimates from an adjusted logistic regression model (mean β = 0.475) and an inverse probability of treatment weighted logistic model (mean β = 2.144) do not coincide with the known true effect (β = 0.68925) when the effect measure modifier is not accounted for. When the marginal and conditional estimates do not coincide despite a rare outcome this may suggest that there is heterogeneity in the effect of treatment between individuals. Failure to specify effect measure modification in the statistical model appears to results in systematic differences between the conditional and marginal estimates. When these differences in estimates are observed, testing for or including interactions or non-linear modeling terms may be advised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rothman KJ, Greenland S. Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins; 1998.

    Google Scholar 

  2. Clayton D, Hills M. Statistical models in epidemiology. Oxford: Oxford University Press; 1993.

    Google Scholar 

  3. Suissa S. Novel approaches to pharmacoepidemiology study design and statistical analysis. In: Strom BL, editor. Pharmacoepidemiology. Sussex: Wiley; 2000. p. 785–805.

    Chapter  Google Scholar 

  4. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60. doi:10.1097/00001648-200009000-00011.

    Article  PubMed  CAS  Google Scholar 

  5. Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11:561–70. doi:10.1097/00001648-200009000-00012.

    Article  PubMed  Google Scholar 

  6. Cole SR, Hernán MA, Robins JM, Anastos K, Chmiel J, Detels R, et al. Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models. Am J Epidemiol. 2003;158:687–94. doi:10.1093/aje/kwg206.

    Article  PubMed  Google Scholar 

  7. Mortimer KM, Neugebauer R, van der Laan MJ, Tager IB. An application of model-fitting procedures for marginal structural models. Am J Epidemiol. 2005;162:382–8. doi:10.1093/aje/kwi208.

    Article  PubMed  Google Scholar 

  8. Brumback BA, Hernán MA, Haneuse SJ, Robins JM. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Stat Med. 2004;23:749–67. doi:10.1002/sim.1657.

    Article  PubMed  Google Scholar 

  9. Hernán MA, Taubman SL. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. Int J Obes Lond. 2008;32(Suppl 3):S8–14. doi:10.1038/ijo.2008.82.

    Article  PubMed  Google Scholar 

  10. Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008;168:656–64. doi:10.1093/aje/kwn164.

    Article  PubMed  Google Scholar 

  11. Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Community Health. 2006;60:578–86. doi:10.1136/jech.2004.029496.

    Article  PubMed  Google Scholar 

  12. Bryan J, Yu Z, van der Laan MJ. Analysis of longitudinal marginal structural models. Biostatistics. 2004;5:361–80. doi:10.1093/biostatistics/kxg041.

    Article  PubMed  Google Scholar 

  13. Stürmer T, Rothman KJ, Glynn RJ. Insights into different results from different causal contrasts in the presence of effect-measure modification. Pharmacoepidemiol Drug Saf. 2006;15:698–709. doi:10.1002/pds.1231.

    Article  PubMed  Google Scholar 

  14. Gail MH, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika. 1984;7:431–44. doi:10.1093/biomet/71.3.431.

    Article  Google Scholar 

  15. Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med. 2006;26:3078–94. doi:10.1002/sim.2781.

    Article  Google Scholar 

  16. Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Stat Med. 2007;26:754–68. doi:10.1002/sim.2618.

    Article  PubMed  Google Scholar 

  17. Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46. doi:10.1214/ss/1009211805.

    Article  Google Scholar 

  18. Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987;125:761–8.

    PubMed  CAS  Google Scholar 

  19. Newman SC. Commonalities in the classical, collapsibility and counterfactual concepts of confounding. J Clin Epidemiol. 2004;57:325–9. doi:10.1016/j.jclinepi.2003.07.014.

    Article  PubMed  Google Scholar 

  20. Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, et al. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262–70. doi:10.1093/aje/kwj047.

    Article  PubMed  Google Scholar 

  21. Burton A, Altman DG, Royston P, Holder RL. The design of simulation studies in medical statistics. Stat Med. 2006;25:4279–92. doi:10.1002/sim.2673.

    Article  PubMed  Google Scholar 

  22. Maldonado G, Greenland S. The importance of critically interpreting simulation studies. Epidemiology. 1997;8:453–6.

    PubMed  CAS  Google Scholar 

  23. Martens EP, Pestman WR, Klungel OH. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study (p n/a). Stat Med. 2007;26:3208–10. doi:10.1002/sim.2878.

    Article  PubMed  Google Scholar 

  24. Robins JM, Hernán MA, Rotnitzky A. Invited Commentary: effect modification by time-varying covariates. Am J Epidemiol. 2007;166:994–1002. doi:10.1093/aje/kwm231.

    Article  PubMed  Google Scholar 

  25. Petersen ML, Deeks SG, Martin JN, van der Laan MJ. History-adjusted marginal structural models for estimating time-varying effect modification. Am J Epidemiol. 2007;166:985–93. doi:10.1093/aje/kwm232.

    Article  PubMed  Google Scholar 

  26. Delaney JAC, Daskalopoulou SS, Suissa S. Traditional versus marginal structural models to estimate the effectiveness of β-blocker use on mortality after myocardial infarction. Pharmacoepidemiol Drug Saf. 2008;. doi:10.1002/pds.1676.

    PubMed  Google Scholar 

  27. Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf. 2006;15:291–303. doi:10.1002/pds.1200.

    Article  PubMed  Google Scholar 

  28. Greenland S. Basic methods for sensitivity analysis of biases. Int J Epidemiol. 1996;25:1107–16. doi:10.1093/ije/25.6.1107-a.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

RP is the recipient of a Chercheur-boursier award from the Fonds de Recherche en Santé du Québec. SS is the recipient of a Distinguished Investigator Award from CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. C. Delaney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaney, J.A.C., Platt, R.W. & Suissa, S. The impact of unmeasured baseline effect modification on estimates from an inverse probability of treatment weighted logistic model. Eur J Epidemiol 24, 343–349 (2009). https://doi.org/10.1007/s10654-009-9341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9341-z

Keywords

Navigation