Skip to main content
Log in

Relationships of self-reported physical activity domains with accelerometry recordings in French adults

  • Methods
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The objective was to examine the relationships of self-reported physical activity (PA) by domain (leisure, occupational, other) with PA and sedentary time as measured objectively by accelerometry. Subjects were adults with low habitual PA levels from a community in northern France. Among subjects in the lowest tertile of a PA score from a screening questionnaire, 160 (37% males, age: 41.0 ± 10.8 years, BMI: 25.1 ± 4.1 kg/m2, mean ± SD) completed a detailed instrument (Modifiable Activity Questionnaire), and wore an accelerometer (Actigraph) for seven consecutive days. Relationships between questionnaire domains (occupational, leisure, and “non-occupational non-leisure”) and accelerometry measures (total activity and sedentary time) were assessed using Spearman correlation coefficients. In this population, the highest contributor to total reported PA (h/week) was occupational PA. Time spent in non-occupational non-leisure PA ranked second in women and third in men. The most frequent non-occupational non-leisure PA were shopping and household chores. In women, non-occupational non-leisure PA contributed more than occupational or leisure-time PA to total PA energy expenditure (median: 18.0, 9.1, and 4.9 MET-h/week, respectively). Total PA by accelerometry (count/day) was correlated to leisure-time PA in women (r = 0.22, P < 0.05) and to occupational (r = 0.43, P < 0.01) and total reported PA (r = 0.39, P < 0.01) in men (all in MET-h/week). There was an inverse relationship between accelerometry sedentary time (h/day) and non-occupational non-leisure PA (MET-h/week, r = −0.30, P < 0.001). These findings indicate the importance of assessing non-occupational non-leisure PA for a better understanding of how individuals partition their time between active or sedentary occupations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FLVS:

Fleurbaix-Laventie Ville-Santé

IPAQ:

International physical activity questionnaire

MAQ:

Modifiable activity questionnaire

PA:

Physical activity

References

  1. World Health Organization. World Health Report 2002: reducing risks promoting healthy life. Geneva: World Health Organization; 2002.

    Google Scholar 

  2. U.S. Department of Health and Human Services. Physical activity and health: a report of the surgeon general. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, S/N 017-023-00196-5; 1996.

  3. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American college of sports medicine and the American heart association. Med Sci Sports Exerc. 2007;39:1423–34. doi:10.1249/mss.0b013e3180616b27.

    Article  PubMed  Google Scholar 

  4. Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, et al. Physical activity and public health. A recommendation from the centers for disease control and prevention and the American college of sports medicine. JAMA. 1995;273:402–7. doi:10.1001/jama.273.5.402.

    Article  PubMed  CAS  Google Scholar 

  5. Sjöström M, Oja P, Hagströmer M, Smith BJ, Bauman A. Health-enhancing physical activity across European Union countries: the Eurobarometer study. J Public Health. 2006;14:291–300.

    Article  Google Scholar 

  6. Escalon H, Vuillemin A, Erpalding ML, Oppert JM. Physical activity: between sports and sedentary behavior [in French]; Baromètre Santé 2005. Paris: Editions INPES; 2008.

    Google Scholar 

  7. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56:2655–67. doi:10.2337/db07-0882.

    Article  PubMed  CAS  Google Scholar 

  8. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289:1785–91. doi:10.1001/jama.289.14.1785.

    Article  PubMed  Google Scholar 

  9. Bertrais S, Beyeme-Ondoua JP, Czernichow S, Galan P, Hercberg S, Oppert JM. Sedentary behaviors, physical activity, and metabolic syndrome in middle-aged French subjects. Obes Res. 2005;13:936–44. doi:10.1038/oby.2005.108.

    Article  PubMed  Google Scholar 

  10. Abu-Omar K, Rutten A. Relation of leisure time, occupational, domestic, and commuting physical activity to health indicators in Europe. Prev Med. 2008;47:319–23. doi:10.1016/j.ypmed.2008.03.012.

    Article  PubMed  Google Scholar 

  11. Dong L, Block G, Mandel S. Activities contributing to total energy expenditure in the United States: results from the NHAPS Study. Int J Behav Nutr Phys Act. 2004;1:4. doi:10.1186/1479-5868-1-4.

    Article  PubMed  Google Scholar 

  12. Greendale GA, Bodin-Dunn L, Ingles S, Haile R, Barrett-Connor E. Leisure, home, and occupational physical activity and cardiovascular risk factors in postmenopausal women. The Postmenopausal estrogens/progestins intervention (PEPI) Study. Arch Intern Med. 1996;156:418–24. doi:10.1001/archinte.156.4.418.

    Article  PubMed  CAS  Google Scholar 

  13. Lawlor DA, Taylor M, Bedford C, Ebrahim S. Is housework good for health? Levels of physical activity and factors associated with activity in elderly women. Results from the British women’s heart and health study. J Epidemiol Community Health. 2002;56:473–8. doi:10.1136/jech.56.6.473.

    Article  PubMed  CAS  Google Scholar 

  14. Salmon J, Owen N, Bauman A, Schmitz MK, Booth M. Leisure-time, occupational, and household physical activity among professional, skilled, and less-skilled workers and homemakers. Prev Med. 2000;30:191–9. doi:10.1006/pmed.1999.0619.

    Article  PubMed  CAS  Google Scholar 

  15. Stamatakis E, Ekelund U, Wareham NJ. Temporal trends in physical activity in England: the health survey for England 1991 to 2004. Prev Med. 2007;45:416–23.

    Article  PubMed  Google Scholar 

  16. Stamatakis E, Hillsdon M, Primatesta P. Domestic physical activity in relationship to multiple CVD risk factors. Am J Prev Med. 2007;32:320–7. doi:10.1016/j.amepre.2006.12.020.

    Article  PubMed  Google Scholar 

  17. Weller I, Corey P. The impact of excluding non-leisure energy expenditure on the relation between physical activity and mortality in women. Epidemiology. 1998;9:632–5. doi:10.1097/00001648-199811000-00012.

    Article  PubMed  CAS  Google Scholar 

  18. Brooks AG, Withers RT, Gore CJ, Vogler AJ, Plummer J, Cormack J. Measurement and prediction of METs during household activities in 35- to 45-year-old females. Eur J Appl Physiol. 2004;91:638–48. doi:10.1007/s00421-003-1018-9.

    Article  PubMed  Google Scholar 

  19. Corder K, Brage S, Ekelund U. Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care. 2007;10:597–603. doi:10.1097/MCO.0b013e328285d883.

    Article  PubMed  Google Scholar 

  20. Lagerros YT, Lagiou P. Assessment of physical activity and energy expenditure in epidemiological research of chronic diseases. Eur J Epidemiol. 2007;22:353–62. doi:10.1007/s10654-007-9154-x.

    Article  PubMed  Google Scholar 

  21. Centers for Disease Control and Prevention. Actigraph National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Actigraph. Available at: http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/paxraw_c.pdf.

  22. Jacobi D, Perrin AE, Grosman N, Dore MF, Normand S, Oppert JM, et al. Physical activity-related energy expenditure with the RT3 and TriTrac accelerometers in overweight adults. Obesity (Silver Spring). 2007;15:950–6. doi:10.1038/oby.2007.605.

    Article  Google Scholar 

  23. Ekelund U, Griffin SJ, Wareham NJ. Physical activity and metabolic risk in individuals with a family history of type 2 diabetes. Diabetes Care. 2007;30:337–42. doi:10.2337/dc06-1883.

    Article  PubMed  Google Scholar 

  24. Kettaneh A, Oppert JM, Heude B, Deschamps V, Borys JM, Lommez A, et al. Changes in physical activity explain paradoxical relationship between baseline physical activity and adiposity changes in adolescent girls: the FLVS II study. Int J Obes Lond. 2005;29:586–93. doi:10.1038/sj.ijo.0802992.

    Article  PubMed  CAS  Google Scholar 

  25. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95. doi:10.1249/01.MSS.0000078924.61453.FB.

    Article  PubMed  Google Scholar 

  26. Tehard B, Saris WH, Astrup A, Martinez JA, Taylor MA, Barbe P, et al. Comparison of two physical activity questionnaires in obese subjects: the NUGENOB study. Med Sci Sports Exerc. 2005;37:1535–41. doi:10.1249/01.mss.0000177464.68521.3b.

    Article  PubMed  Google Scholar 

  27. Vuillemin A, Oppert JM, Guillemin F, Essermeant L, Fontvieille AM, Galan P, et al. Self-administered questionnaire compared with interview to assess past-year physical activity. Med Sci Sports Exerc. 2000;32:1119–24. doi:10.1097/00005768-200006000-00013.

    Article  PubMed  CAS  Google Scholar 

  28. Kriska AM, Knowler WC, LaPorte RE, Drash AL, Wing RR, Blair SN, et al. Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care. 1990;13:401–11. doi:10.2337/diacare.13.4.401.

    Article  PubMed  CAS  Google Scholar 

  29. Schulz LO, Harper IT, Smith CJ, Kriska AM, Ravussin E. Energy intake and physical activity in Pima indians: comparison with energy expenditure measured by doubly-labeled water. Obes Res. 1994;2:541–8.

    PubMed  CAS  Google Scholar 

  30. Pereira MA, FitzerGerald SJ, Gregg EW, Joswiak ML, Ryan WJ, Suminski RR, et al. A collection of physical activity questionnaires for health-related research. Med Sci Sports Exerc. 1997;29:S1–205. doi:10.1097/00005768-199705001-01074.

    PubMed  CAS  Google Scholar 

  31. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504. doi:10.1097/00005768-200009001-00009.

    Article  PubMed  CAS  Google Scholar 

  32. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81. doi:10.1097/00005768-199805000-00021.

    Article  PubMed  CAS  Google Scholar 

  33. Balkau B, Mhamdi L, Oppert JM, Nolan J, Golay A, Porcellati F, et al. EGIR-RISC study group. Physical activity and insulin sensitivity: the RISC study. Diabetes. 2008;57:2613–8. doi:10.2337/db07-1605.

    Article  PubMed  CAS  Google Scholar 

  34. Cooper AR, Page A, Fox KR, Misson J. Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry. Eur J Clin Nutr. 2000;54:887–94. doi:10.1038/sj.ejcn.1601116.

    Article  PubMed  CAS  Google Scholar 

  35. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403. doi:10.1056/NEJMoa012512.

    Article  PubMed  CAS  Google Scholar 

  36. Salmon J, Bauman A, Crawford D, Timperio A, Owen N. The association between television viewing and overweight among Australian adults participating in varying levels of leisure-time physical activity. Int J Obes Relat Metab Disord. 2000;24:600–6. doi:10.1038/sj.ijo.0801203.

    Article  PubMed  CAS  Google Scholar 

  37. Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37:197–206. doi:10.1136/bjsm.37.3.197.

    Article  PubMed  CAS  Google Scholar 

  38. Bassett DR Jr. Validity and reliability issues in objective monitoring of physical activity. Res Q Exerc Sport. 2000;71:S30–6.

    PubMed  Google Scholar 

  39. Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37:S582–8. doi:10.1249/01.mss.0000185292.71933.91.

    Article  PubMed  Google Scholar 

  40. Neilson HK, Robson PJ, Friedenreich CM, Csizmadi I. Estimating activity energy expenditure: how valid are physical activity questionnaires? Am J Clin Nutr. 2008;87:279–91.

    PubMed  CAS  Google Scholar 

  41. Matthews CM. Calibration of accelerometer output for adults. Med Sci Sports Exerc. 2005;37:S512–22. doi:10.1249/01.mss.0000185659.11982.3d.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Leila Mhamdi, PhD, for her assistance in data analysis. We thank Cedus, Go Sport, Fournier Pharma, Roche, Lesieur, and Nestlé France for their support to the Fleurbaix-Laventie Ville-Santé study. This project was supported by a research-action grant from the French Ministry of Health—National Nutrition and Health Program (PNNS-2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Oppert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobi, D., Charles, MA., Tafflet, M. et al. Relationships of self-reported physical activity domains with accelerometry recordings in French adults. Eur J Epidemiol 24, 171–179 (2009). https://doi.org/10.1007/s10654-009-9329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9329-8

Keywords

Navigation