Skip to main content
Log in

Examining secular trends and seasonality in count data using dynamic generalized linear modelling: a new methodological approach illustrated with hospital discharge data on myocardial infarction

  • Methods
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Time series of incidence counts often show secular trends and seasonal patterns. We present a model for incidence counts capable of handling a possible gradual change in growth rates and seasonal patterns, serial correlation, and overdispersion. The model resembles an ordinary time series regression model for Poisson counts. It differs in allowing the regression coefficients to vary gradually over time in a random fashion. During the 1983–1999 period, 17,989 incidents of acute myocardial infarction were recorded in the Hospital Discharge Registry for the county of North Jutland, Denmark. Records were updated daily. A dynamic model with a seasonal pattern and an approximately linear trend was fitted to the data, and diagnostic plots indicated a good model fit. The analysis conducted with the dynamic model revealed peaks coinciding with above-average influenza A activity. On average the dynamic model estimated a higher peak-to-trough ratio than traditional models, and showed gradual changes in seasonal patterns. Analyses conducted with this model provide insights not available from more traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arntz HR, Willich SN, Schreiber C, Bruggemann T, Stern R, Schultheiss HP. Diurnal, weekly and seasonal variation of sudden death. Population-based analysis of 24,061 consecutive cases. Eur Heart J. 2000;21(4):315–20. doi:10.1053/euhj.1999.1739.

    Article  PubMed  CAS  Google Scholar 

  2. Boulay F, Berthier F, Sisteron O, Gendreike Y, Gibelin P. Seasonal variation in chronic heart failure hospitalizations and mortality in France. Circulation. 1999;100(3):280–6.

    PubMed  CAS  Google Scholar 

  3. Brennan PJ, Greenberg G, Miall WE, Thompson SG. Seasonal variation in arterial blood pressure. Br Med J (Clin Res Ed). 1982;285(6346):919–23.

    Article  CAS  Google Scholar 

  4. Douglas AS, Dunnigan MG, Allan TM, Rawles JM. Seasonal variation in coronary heart disease in Scotland. J Epidemiol Community Health. 1995;49(6):575–82. doi:10.1136/jech.49.6.575.

    Article  PubMed  CAS  Google Scholar 

  5. Feigin VL, Anderson CS, Rodgers A, Bennett DA. Subarachnoid haemorrhage occurrence exhibits a temporal pattern—evidence from meta-analysis. Eur J Neurol. 2002;9(5):511–6. doi:10.1046/j.1468-1331.2002.00455.x.

    Article  PubMed  CAS  Google Scholar 

  6. Frost L, Johnsen SP, Pedersen L, Husted S, Engholm G, Sorensen HT, et al. Seasonal variation in hospital discharge diagnosis of atrial fibrillation: a population-based study. Epidemiology. 2002;13(2):211–5. doi:10.1097/00001648-200203000-00017.

    Article  PubMed  Google Scholar 

  7. Spencer FA, Goldberg RJ, Becker RC, Gore JM. Seasonal distribution of acute myocardial infarction in the second national registry of myocardial infarction. J Am Coll Cardiol. 1998;31(6):1226–33. doi:10.1016/S0735-1097(98)00098-9.

    Article  PubMed  CAS  Google Scholar 

  8. Nelson W, Tong YL, Lee JK, Halberg F. Methods for cosinor-rhythmometry. Chronobiologia. 1979;6(4):305–23.

    PubMed  CAS  Google Scholar 

  9. Edwards JH. The recognition and estimation of cyclic trends. Ann Hum Genet. 1961;25:83–7. doi:10.1111/j.1469-1809.1961.tb01501.x.

    Article  PubMed  CAS  Google Scholar 

  10. Jensen ES, Lundbye-Christensen S, Samuelsson S, Sorensen HT, Schonheyder HC. A 20-year ecological study of the temporal association between influenza and meningococcal disease. Eur J Epidemiol. 2004;19(2):181–7. doi:10.1023/B:EJEP.0000017659.80903.5f.

    Article  PubMed  Google Scholar 

  11. Hastie TJ, Tibshirani RJ. Generalized additive models. London: Chapman & Hall; 1990.

    Google Scholar 

  12. Katsouyanni K, Schwartz J, Spix C, Touloumi G, Zmirou D, Zanobetti A, et al. Short term effects of air pollution on health: a European approach using epidemiologic time series data: the APHEA protocol. J Epidemiol Community Health. 1996;50(Suppl 1):S12–8. doi:10.1136/jech.50.Suppl_1.S12.

    Article  PubMed  Google Scholar 

  13. Schwartz J, Spix C, Touloumi G, Bacharova L, Barumamdzadeh T, le Tertre A, et al. Methodological issues in studies of air pollution and daily counts of deaths or hospital admissions. J Epidemiol Community Health. 1996;50(Suppl 1):S3–11. doi:10.1136/jech.50.Suppl_1.S3.

    Article  PubMed  Google Scholar 

  14. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42(1):121–30. doi:10.2307/2531248.

    Article  PubMed  CAS  Google Scholar 

  15. Chan KS, Ledolter J. Monte Carlo EM estimation for time series models involving counts. J Am Stat Assoc. 1995;90(429):242–52. doi:10.2307/2291149.

    Article  Google Scholar 

  16. Zeger SL, Qaqish B. Markov regression models for time series: a quasi-likelihood approach. Biometrics. 1988;44(4):1019–31. doi:10.2307/2531732.

    Article  PubMed  CAS  Google Scholar 

  17. Crawford VL, McCann M, Stout RW. Changes in seasonal deaths from myocardial infarction. QJM. 2003;96(1):45–52. doi:10.1093/qjmed/hcg005.

    Article  PubMed  CAS  Google Scholar 

  18. Fischer T, Lundbye-Christensen S, Johnsen SP, Schonheyder HC, Sorensen HT. Secular trends and seasonality in first-time hospitalization for acute myocardial infarction—a Danish population-based study. Int J Cardiol. 2004;97(3):425–31. doi:10.1016/j.ijcard.2003.10.026.

    Article  PubMed  Google Scholar 

  19. Seretakis D, Lagiou P, Lipworth L, Signorello LB, Rothman KJ, Trichopoulos D. Changing seasonality of mortality from coronary heart disease. JAMA. 1997;278(12):1012–4. doi:10.1001/jama.278.12.1012.

    Article  PubMed  CAS  Google Scholar 

  20. Durbin J, Koopman SJ. Time Series Analysis by State Space Methods. Oxford: Oxford University Press; 2001.

    Google Scholar 

  21. McCullagh P, Nelder JA. Generalized Linear Models. London: Chapman and Hall; 1989.

    Google Scholar 

  22. West M, Harrison PJ, Migon HS. Dynamic generalized linear models and bayesian forecasting. J Am Stat Assoc. 1985;80(389):73–83. doi:10.2307/2288042.

    Article  Google Scholar 

  23. Dethlefsen C, Lundbye-Christensen S. Formulating state space models in R with focus on longitudinal regression models. J Stat Softw. 2006;16(1):1–15.

    Google Scholar 

  24. R Development Core Team. R: A language and environment for statistical computing; 2007 (Report No.: Version 2.5.1. ISBN 3-900051-07-0).

  25. Dethlefsen C. Space time problems and applications. Ph.D. Thesis: Aalborg University; 2002.

  26. Jorgensen B, Lundbye-Christensen S, Song XK, Sun L. A longitudinal study of emergency room visits and air pollution for Prince George, British Columbia. Stat Med. 1996;15(7–9):823–36. doi:10.1002/(SICI)1097-0258(19960415)15:7/9<823::AID-SIM252>3.0.CO;2-A.

    Article  PubMed  CAS  Google Scholar 

  27. Koopman SJ, Shephard N, Doornik JA. Statistical algorithms for models in state Space using SsfPack 2.2. Econometrics. 1999;2:113–66.

    Google Scholar 

  28. Ripley BD. Time series in R 1.5.0. R News. 2002;2(2):2–7.

    Google Scholar 

  29. Nyblom J. Testing for the constancy of parameters over time. J Am Stat Assoc. 1989;84(405):223–30. doi:10.2307/2289867.

    Article  Google Scholar 

  30. Ornato JP, Peberdy MA, Chandra NC, Bush DE. Seasonal pattern of acute myocardial infarction in the National Registry of Myocardial Infarction. J Am Coll Cardiol. 1996;28(7):1684–8. doi:10.1016/S0735-1097(96)00411-1.

    Article  PubMed  CAS  Google Scholar 

  31. Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001;103(23):2810–5.

    PubMed  CAS  Google Scholar 

  32. Lindsberg PJ, Grau AJ. Inflammation and infections as risk factors for ischemic stroke. Stroke. 2003;34(10):2518–32. doi:10.1161/01.STR.0000089015.51603.CC.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Stefan Christensen, Statens Serum Institut, for his input regarding the model fitting procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lundbye-Christensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundbye-Christensen, S., Dethlefsen, C., Gorst-Rasmussen, A. et al. Examining secular trends and seasonality in count data using dynamic generalized linear modelling: a new methodological approach illustrated with hospital discharge data on myocardial infarction. Eur J Epidemiol 24, 225–230 (2009). https://doi.org/10.1007/s10654-009-9325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9325-z

Keywords

Navigation