Skip to main content

Advertisement

Log in

Revisiting the interaction between birth weight and current body size in the foetal origins of adult disease

  • METHODS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The four models proposed for exploring the foetal origins of adult disease (FOAD) hypothesis use the product term between size at birth and current size to determine the relative importance of pre- and post-natal growth on disease in later life. This is a common approach for testing the interaction between an exposure (in this instance size at birth) and an effect modifier (in this instance current size)—incorporating the product term obtained by multiplying the exposure and effect modifier variables within a statistical regression model. This study examines the mathematical basis for this approach and uses computer simulations to demonstrate two potential statistical flaws that might generate misleading findings. The first of these is that the expected value of the partial regression coefficient for the product term (between exposure and effect modifier) will be zero when the outcome, exposure and effect modifier are all continuously distributed and follow a multivariate normal distribution. This is because testing the product interaction term amounts to testing for multivariate normality among the three variables, irrespective of the pair-wise correlations amongst them. The second flaw is that it is possible to generate a statistically significant interaction between exposure and effect modifier, even when none exists, simply by categorising either or both of these variables. These flaws pose a serious challenge to the four models approach proposed for exploring the FOAD hypothesis. The interaction between exposure and effect modifier variables should be interpreted with caution both here and elsewhere in epidemiological analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker DJP. Developmental origins of adult health and disease. J Epidemiol Commun Health 2004;58:114–5.

    Article  CAS  Google Scholar 

  2. Leon DA, Koupilova I, Lithell HO, Berglund L, Mohsen R, Vagero D, et al. Failure to realise growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men. BMJ 1996;312:401–6.

    PubMed  CAS  Google Scholar 

  3. Barker DJP. The fetal origins of type 2 diabetes mellitus. Ann Intern Med 1999;130:322–4.

    PubMed  CAS  Google Scholar 

  4. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens 2000;18:815–31.

    Article  PubMed  CAS  Google Scholar 

  5. Huxley RR, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 2002;360:659–65.

    Article  PubMed  Google Scholar 

  6. Tu YK, West R, Ellison GTH, et al. Why evidence for the fetal origins of adult disease might be a statistical artifact: the “reversal paradox” for the relation between birth weight and blood pressure in later life. Am J Epidemiol 2005;161:27–32.

    Article  PubMed  Google Scholar 

  7. Cole TJ. A critical evaluation of the fetal origins hypothesis and its implications for developing countries. J Nutr 2004;134:201–4.

    PubMed  CAS  Google Scholar 

  8. Vagero D, Illsley R. Explaining health inequalities. Beyond Black and Barker—a discussion of some issues emerging in the decade following the Black report. Eur Sociolog Rev 1995;11:219–41.

    Google Scholar 

  9. Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease—the hypothesis revisited. BMJ 1999;319:245–9.

    PubMed  CAS  Google Scholar 

  10. Tu YK, Ellison GTH, Gilthorpe MS. What is the effect of adjusting for more than one measure of current body size on the relation between birthweight and blood pressure? J Hum Hypertens 2006;20:646–57.

    Article  PubMed  Google Scholar 

  11. Paneth N, Susser M. Early origin of coronary heart disease (the “Barker hypothesis”). BMJ 1995;310:411–2.

    PubMed  CAS  Google Scholar 

  12. Paneth N, Ahmed F, Stein AD. Early nutritional origins of hypertension: a hypothesis still lacking support. J Hypertens 1996;14:S121–9.

    CAS  Google Scholar 

  13. Walker SP, Gaskin P, Powell CA, Bennett FI, Forrester TE, Grantham-McGregor S. The effects of birth weight and postnatal linear growth retardation on blood pressure at age 11–12 years. J Epidemiol Commun Health 2001;55:394–8.

    Article  CAS  Google Scholar 

  14. Williams S, Poulton R. Birth size, growth, and blood pressure between the ages of 7 and 26 years: failure to support the foetal origins hypothesis. Am J Epidemiol 2002;155:849–52.

    Article  PubMed  Google Scholar 

  15. Burke V, Beilin LJ, Blake KV, Doherty D, Kendall GE, Newnham LI, Stanley FJ. Indicators of foetal growth do not independently predict blood pressure in 8-year-old Australians: a prospective cohort study. Hypertension 2004;43:208–13.

    Article  PubMed  CAS  Google Scholar 

  16. Davies AA, Davey Smith G, Ben-Shlomo Y, Litchfield P. Low birth weight is associated with higher adult total cholesterol concentration in men: findings from an occupational cohort of 25,843 employees. Circulation 2004;110:1258–62.

    Article  PubMed  Google Scholar 

  17. Cox DR, Small NJH. Testing multivariate normality. Biometrika 1978;65:263–72.

    Article  Google Scholar 

  18. Cox DR, Wermuth N. Tests of linearity, multivariate normality and the adequacy of linear scores. Appl Statist 1994;43:347–55.

    Article  Google Scholar 

  19. Cox DR. Note on grouping. J Am Statist Assoc 1957;52:543–7.

    Article  Google Scholar 

  20. Zhao LP, Kolonel LN. Efficiency loss from categorising quantitative exposures into qualitative exposures in case-control studies. Am J Epidemiol 1992;136:464–74.

    PubMed  CAS  Google Scholar 

  21. MacCallum RC, Zhang S, Preacher KJ, Rucker DD. On the practice of dichotomisation of quantitative variables. Psychological Methods 2002;7:19–40.

    Article  PubMed  Google Scholar 

  22. Taylor JMG, Yu M. Bias and efficiency loss due to categorising an explanatory variable. J Multivariate Anal 2002;83:248–63.

    Article  Google Scholar 

  23. Cumsille F, Bangdiwala SI, Sen PK, Kupper LL. Effect of dichotomising a continuous variable on the model structure in multiple linear regression models. Commun Statist-Theory Meth 2000;29:643–54.

    Article  Google Scholar 

  24. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0, URL http://www.R-project.org.

  25. Hennessy E, Alberman E. Intergenerational influences affecting birth outcome. II. Preterm delivery and gestational age in the children of the 1958 British birth cohort. Pediatr Perinat Epidemiol 1998;12(Suppl 1):61–75.

    Article  Google Scholar 

  26. Ripley BD, Venables WN. Modern applied statistics with S. 4th ed. New York: Springer Verlag; 2002.

    Google Scholar 

  27. Tu YK, Ellison GT, Gilthorpe MS. Growth, current size and the role of the ‘reversal paradox’ in the foetal origins of adult disease: an illustration using vector geometry. Epidemiol Perspect Innov 2006;3:9.

    Article  PubMed  Google Scholar 

  28. Tu YK, Gilthorpe MS. Unexplained residuals models are not solutions to statistical modeling of the fetal origins hypothesis (letter to the editor). J Clin Epidemiol 2007;60:318–9.

    Article  PubMed  Google Scholar 

  29. De Stavola BL, Nitsch D, dos Santos Silva I, McCormack V, Hardy R, Mann V, Cole TJ, Morton S, Leon DA. Statistical issues in life course epidemiology. Am J Epidemiol 2006;163:84–96.

    Article  PubMed  Google Scholar 

  30. Sandhu J, Davey Smith G, Holly J, Cole TJ, Ben-Shlomo Y. Timing of puberty determines serum insulin-like growth factor-I in late adulthood. J Clin Endocrinol Metab 2006;91:3150–7.

    Article  PubMed  CAS  Google Scholar 

  31. West RM, Harris K, Gilthorpe MS. Lifecourse functions: a functional data approach to lifecourse analysis. Pediatr Res 2005;58:1050.

    Google Scholar 

  32. Weisberg S. Applied linear regression. 2nd ed. New York: Wiley; 1985.

    Google Scholar 

  33. Bohrnstedt GW, Goldberger AS. On the exact covariance of products of random variables. J Am Statist Assoc 1969;64:1439–42.

    Article  Google Scholar 

  34. Anderson TW. An introduction to multivariate statistical analysis. 3rd ed. New Jersey: Wiley; 2003, pp 46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Kang Tu.

Appendix: derivation of the correlations between XZ and, Y, X and Z

Appendix: derivation of the correlations between XZ and, Y, X and Z

Take three multivariate normal random variables X, Y, and Z, where Y is the outcome in a regression model with X and Z and their product interaction term (XZ) as covariates:

$$ Y = B_{0} + B_{1} X + B_{2} Z + B_{3} XZ + \varepsilon $$
(A1)

where B 0 is the intercept; B 1 the partial regression coefficient for X; B 2 the partial regression coefficient for Z; B 3 the partial regression coefficient for XZ; and ε the residual error. To prove that the partial regression coefficient for product interaction term XZ is zero, under the assumption of multivariate normality and irrespective of pair-wise correlations amongst Y, X and Z, it is sufficient to prove that the standardized partial regression coefficient for XZ (β 3) is zero. Using matrix algebra for the regression model [32], one can write:

$${\bf{Y}}\, = \,{\bf{AB}}\, \Rightarrow \,{\bf{A}'{Y}}\, = \,{\bf{A}}'{\bf{AB}}\, \Rightarrow \,{\left( {{\bf{A}}'{\bf{A}}} \right)}^{{ - 1}} {\left( {{\bf{A}}'{\bf{Y}}} \right)}\, = \,{\bf{B}}$$

where: Y is a vector (n × 1) of standardized Y values; A is a matrix (n × 3) of standardize X, Z and XZ covariate values; B is a vector (3 × 1) of the standardized partial regression coefficients; and the prime, ′, denotes the matrix transpose. Furthermore, denoting \( {\mathbf{M}} = {\left( {{\mathbf{A}}^{{ - {\mathbf{1}}}} {\mathbf{A}}} \right)} \), M is therefore the correlation matrix for the three covariates. Thus,

$$ {\mathbf{B}} = {\left( {\begin{array}{*{20}c} {{\beta _{1} }} \\ {{\beta _{2} }} \\ {{\beta _{3} }} \\ \end{array} } \right)} = {\mathbf{M}}^{{ - {\mathbf{1}}}} {\mathbf{A}}'{\mathbf{Y}} = {\left( {\begin{array}{*{20}c} {1} & {{r_{{X,Z}} }} & {{r_{{X,XZ}} }} \\ {{r_{{X,Z}} }} & {1} & {{r_{{Z,XZ}} }} \\ {{r_{{X,XZ}} }} & {{r_{{Z,XZ}} }} & {1} \\ \end{array} } \right)}^{{ - 1}} {\left( {\begin{array}{*{20}c} {{r_{{Y,X}} }} \\ {{r_{{Y,Z}} }} \\ {{r_{{Y,XZ}} }} \\ \end{array} } \right)}. $$
(A2)

Solving Eq. A2 for the coefficient β 3, according to standard matrix algebra (27):

$$ \beta _{3} = \frac{1} {{\det {\left( {\mathbf{M}} \right)}}}{\left[ {r_{{Y,X}} {\left( {r_{{X,Z}} r_{{Z,XZ}} - r_{{X,XZ}} } \right)} + r_{{Y,Z}} {\left( {r_{{X,Z}} r_{{X,XZ}} - r_{{Z,XZ}} } \right)} + r_{{Y,XZ}} {\left( {1 - r^{2}_{{X,Z}} } \right)}} \right]} $$
(A3)

where: \( \det ({\bf{M}}) = 1 + 2r_{{X,Z}} r_{{X,XZ}} r_{{Z,XZ}} - r^{2}_{{X,Z}} - r^{2}_{{X,XZ}} - r^{2}_{{Z,XZ}} \) is the matrix determinant of M; and r a,b is the correlation between a and b, substituting X, Y, Z, or XZ for a and b as appropriate.

Under the assumption of multivariate normality, it can be shown that [33, 34]:

$$ \begin{aligned}{} & \sigma _{{X,XZ}} = E{\left( X \right)}\sigma _{{X,Z}} + E{\left( Z \right)}\sigma ^{2}_{X} \\ & \sigma _{{Y,XZ}} = E{\left( X \right)}\sigma _{{Y,Z}} + E{\left( Z \right)}\sigma _{{Y,X}} \\ & \sigma _{{Z,XZ}} = E{\left( X \right)}\sigma ^{2}_{Z} + E{\left( Z \right)}\sigma _{{X,Z}} \\ \end{aligned} $$
(A4)

where: σ a,b is the covariance of a and b; E(a) the expected value of a; and \( \sigma ^{2}_{a} \) the variance of a, again substituting X, Y, Z, or XZ for a and b as appropriate.

Now, denoting \( V_{X} = {\sigma _{X} } \mathord{\left/ {\vphantom {{\sigma _{X} } {E(X)}}} \right. \kern-\nulldelimiterspace} {E(X)} \) and \( V_{Z} = {\sigma _{Z} } \mathord{\left/ {\vphantom {{\sigma _{Z} } {E(Z)}}} \right. \kern-\nulldelimiterspace} {E(Z)} \), where E(X) ≠ 0 and E(Z) ≠ 0 (which can be guaranteed by adding an arbitrary constant to X or Z), writing \( D = {\sqrt {V^{2}_{X} + V^{2}_{Z} + 2r_{{X,Z}} V_{X} V_{Z} + V^{2}_{X} V^{2}_{Z} (1 + r^{2}_{{Y,X}} )} } \), and utilising Eq. A4, the correlations between X and XZ (r X,XZ ), Y and XZ (r Y,XZ ), and Z and XZ (r Z,XZ ) can be written:

$$ \begin{aligned}{} & r_{{X,XZ}} = {{\left( {V_{X} + r_{{X,Z}} V_{Z} } \right)}} \mathord{\left/ {\vphantom {{{\left( {V_{X} + r_{{X,Z}} V_{Z} } \right)}} D}} \right. \kern-\nulldelimiterspace} D \\ & r_{{Y,XZ}} = {{\left( {r_{{Y,X}} V_{X} + r_{{Y,Z}} V_{Z} } \right)}} \mathord{\left/ {\vphantom {{{\left( {r_{{Y,X}} V_{X} + r_{{Y,Z}} V_{Z} } \right)}} D}} \right. \kern-\nulldelimiterspace} D, \\ & r_{{Z,XZ}} = {{\left( {r_{{X,Z}} V_{X} + V_{Z} } \right)}} \mathord{\left/ {\vphantom {{{\left( {r_{{X,Z}} V_{X} + V_{Z} } \right)}} D}} \right. \kern-\nulldelimiterspace} D \\ \end{aligned} $$
(A5)

and Eq. A3 then becomes:

$$ \beta _{3} = \frac{1} {{D*\det {\left( {\mathbf{M}} \right)}}}{\left\{ \begin{aligned}{} & r_{{Y,X}} {\left[ {r_{{X,Z}} {\left( {r_{{X,Z}} V_{X} + V_{Z} } \right)} - {\left( {V_{X} + r_{{X,Z}} V_{Z} } \right)}} \right]} + \\ & r_{{Y,Z}} {\left[ {r_{{X,Z}} {\left( {V_{X} + r_{{X,Z}} V_{Z} } \right)} - {\left( {r_{{X,Z}} V_{X} + V_{Z} } \right)}} \right]} + \\ & {\left( {1 - r^{2}_{{X,Z}} } \right)}{\left( {r_{{Y,X}} V_{X} + r_{{Y,Z}} V_{Z} } \right)} \\ \end{aligned} \right\}} = \frac{{{\left\{ 0 \right\}}}} {{D*\det {\left( {\mathbf{M}} \right)}}} = 0. $$

Testing the product term is thus to test the linearity and multivariate normality of the three continuous variables [17, 18]. The interaction effect is scale-dependent since transformation of the original variables can attenuate the interaction coefficient or produce a non-zero effect that is otherwise zero for the original variables.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, YK., Manda, S.O.M., Ellison, G.T.H. et al. Revisiting the interaction between birth weight and current body size in the foetal origins of adult disease. Eur J Epidemiol 22, 565–575 (2007). https://doi.org/10.1007/s10654-007-9159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-007-9159-5

Keywords

Navigation