Skip to main content
Log in

AHSG gene polymorphisms are associated with bone mineral density in Caucasian nuclear families

  • Original Paper
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the role of alpha2–HS glycoprotein (AHSG) gene on bone mineral density (BMD) variation.

Methods

A total of 665 subjects from 157 Caucasian nuclear families were genotyped at the AHSG NlaIII, SacI sites. The association and linkage between the single SNP markers and haplotypes constructed by two markers in this gene and BMDs at the spine and hip were determined by using quantitative transmission disequilibrium test (QTDT).

Results

Significant within-family associations were obtained for spine BMD at both of studied markers (P = 0.036 and 0.005 at the NlaIII and SacI sites, respectively). Significant (P = 0.008 at the NlaIII locus) (P = 0.004 at the SacI locus) total associations at spine BMD were detected. Haplotype analyses confirmed those within-family and total association.

Conclusions

These data suggest the polymorphisms in the AHSG gene may have effects on BMD variation in Caucasian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHSG:

Alpha2-HS glycoprotein

BMD:

Bone mineral density

QTDT:

Quantitative transmission disequilibrium test

OF:

Osteoporotic fractures

LD:

Linkage disequilibrium

PCR:

Polymerase chain reaction

RFLP:

Restriction fragment length polymorphism

DXA:

Dual-energy X-ray absorptiometry

CV:

Coefficient of variability

References

  1. Jones G, Nguyen T, Sambrook PN, Kelly PJ, Gilbert C, Eisman JA. Symptomatic fracture incidence in olderly men and women: the Dubbo Osteoporosis Epidemiology study (DOES). Osteoporos Int 1994;4:277–2.

    Article  PubMed  CAS  Google Scholar 

  2. Recker RR, Deng HW. The role of genetics in osteoporosis. Endocrine 2002;17:55–56.

    Article  PubMed  CAS  Google Scholar 

  3. Binkert C, Demetriou M, Sukhu B, Szweras M, Tenenbaum HC, Dennis JW. Regulation of osteogenesis by fetuin. J Biol Chem 1999;28:514–20.

    Google Scholar 

  4. Kalabay L, Cseh K, Pajor A, Baranyi E, Csakany GM, Melczer Z, et al. Correlation of maternal serum fetuin/alpha2-HS-glycoprotein concentration with maternal insulin resistance and anthropometric parameters of neonates in normal pregnancy and gestational diabetes. Eur J Endocrinol 2002;147:243–8.

    Article  PubMed  CAS  Google Scholar 

  5. Audi L, Garcia-Ramirez M, Carrascosa A. Genetic determinants of bone mass. Horm Res 1999;51:105–123.

    Article  PubMed  CAS  Google Scholar 

  6. Eichner JE, Friedrich CA, Cauley JA, Kamboh MI, Gutai LH, Kuller LH, et al. Alpha 2-HS glycoprotein phenotypes and quantitative hormone and bone measures in postmenopausal women. Calcif Tissue Int 1990;47:345–9.

    Article  PubMed  CAS  Google Scholar 

  7. Eichner JE, Cauley JA, Ferrell RE, Cummings SR, Kuller LH. Genetic variation in two bone-related proteins: Is there an association with bone mineral density or skeletal size in postmenopausal women? Genet Epidemiol 1992;9:177–84.

    Article  PubMed  CAS  Google Scholar 

  8. Dickson IR, Gwilliam R, Arora M, Murphy S, Khaw KT, Phillips C, et al. Lumbar vertebral and femoral neck bone mineral density are higher in postmenopausal women with the alpha 2HS-glycoprotein 2 phenotype. Bone Miner 1994;24:181–8.

    Article  PubMed  CAS  Google Scholar 

  9. Zmuda JM, Eichner JE, Ferrell RE, Bauer DC, Kuller JA, Cauley JA. Genetic variation in alpha 2Hsglycoprotein is related to calcaneal broadband ultrasound attenuation in older women. Calcif Tissue Int 1998;63:5–8.

    Article  PubMed  CAS  Google Scholar 

  10. Liu XH, Liu YJ, Jiang DK, Li YM, Li MX, Qin YJ, et al. No evidence for linkage and/or association of human alpha2-HS glycoprotein gene with bone mineral density variation in chinese nuclear families. Calcif Tissue Int 2003;73:244–50.

    Article  PubMed  CAS  Google Scholar 

  11. Risch N, Merikangas K. The future of genetic studies of complex human disease. Science 1996;273:1516–7.

    Article  PubMed  CAS  Google Scholar 

  12. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulindependent diabetes mellitus (IDDM). Am J Hum Genet 1993;52:506–16.

    PubMed  CAS  Google Scholar 

  13. Allison DB. Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 1997;60:676–90.

    PubMed  CAS  Google Scholar 

  14. Deng HW, Shen H, Xu FH, Deng HY, Conway T, Zhang HT, et al. Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res 2002;17:678–86.

    Article  PubMed  CAS  Google Scholar 

  15. Osawa M, Umetsu K, Ohki T, Nagasawa T, Suzuki T, Takeichi S. Molecular evidence for human alpha 2-HS glycoprotein (AHSG) polymorphism. Hum Genet 1997;99:18–21.

    Article  PubMed  CAS  Google Scholar 

  16. O’Connell JR, Weeks DE. PedCheck: a program for identi .cation of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998;63:259–66.

    Article  PubMed  CAS  Google Scholar 

  17. Abecasis GR, Cardon LR, Cookson WO. A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000;66:279–92.

    Article  PubMed  CAS  Google Scholar 

  18. Fulker DW, Cherny SS, Sham PC. Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet 1999;64:259–67.

    Article  PubMed  CAS  Google Scholar 

  19. Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 1996;58:1323–37.

    PubMed  CAS  Google Scholar 

  20. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263–5.

    Article  PubMed  CAS  Google Scholar 

  21. Dequeker J, Nijs J, Verstraeten A, Geusens P, Gevers G. Genetic determinants of bone mineral content at the spine and radius: A twin study. Bone 1987;8:207–9.

    Article  PubMed  CAS  Google Scholar 

  22. Keen RW, Snieder H, Molloy H, Daniels J, Chiano M, Gibson F, et al. Evidence of association and linkage disequilibrium between a novel polymorphism in the transforming growth factor beta 1 gene and hip bone mineral density: a study of female twins. Rheumatology (Oxford) 2001;40:48–54

    Article  CAS  Google Scholar 

  23. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RB. Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am J Hum Genet 1997;60:1326–32.

    PubMed  CAS  Google Scholar 

  24. Deng HW, Chen WM, Recker S, Stegman MR, Li JL, Davies KM, et al. Genetic determination of Colles’ fractures and differential bone mass in women with and without Colles’ fractures. J Bone Miner Res 2000;15:1243–52.

    Article  PubMed  CAS  Google Scholar 

  25. Dickson IR, Poole AR, Veis A. Localisation of plasma a2HS glycoprotein in mineralising human bone. Nature 1975;256:430–2.

    Article  PubMed  CAS  Google Scholar 

  26. Jahnen-Dechent W, Schinke T, Trindl A, Muller-Esterl W, Sablitzky F, Kaiser S, et al. Cloning and targeted deletion of the mouse fetuin gene. J Biol Chem 1997;272:31496–503.

    Article  PubMed  CAS  Google Scholar 

  27. Yang F, Schwartz Z, Swain LD, Lee CC, Bowman BH, Boyan BD. Alpha2-HS-glycoprotein: expression in chondrocytes and augmentation of alkaline phosphatase and phospholipase A2 activity. Bone 1991;12:7–15.

    Article  PubMed  CAS  Google Scholar 

  28. Brown WM, Dziegielewska KM, Saunders NR, Christie P, Nawratil P, Muller-Esterl W. The nucleotide and deduced amino acid structures of sheep and pig fetuin. Common structural features of the mammalian fetuin family. Eur J Biochem 1992;205:321–31.

    Article  PubMed  CAS  Google Scholar 

  29. Dziegielewska KM, Daikuhara Y, Ohnishi T, Waite MP, Ek J, Habgood MD, et al. Fetuin in the developing neocortex of the rat: distribution and origin. J Comp Neurol 2000;3:373–88.

    Article  Google Scholar 

  30. Deng HW. Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits. Genetics 2001;159:1319–23.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Investigators of this work were partially supported by grants from NIH (K01 AR02170-01, R01 AR45349-01, R01 GM60402-01A1, P01 DC01813-07) and an LB595 grant from the State of Nebraska. The study was also benefited from grants from National Science Foundation of China, Hunan Normal University, Xi’an Jiaotong University, and the Ministry of Education of China.

Funding Sources: NIH, Health Future Foundation, US Dept. of Energy, State of Nebraska, Creighton University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wen Deng.

Additional information

Yan-Jun Yang and Yan-Bo Wang contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YJ., Wang, YB., Lei, SF. et al. AHSG gene polymorphisms are associated with bone mineral density in Caucasian nuclear families. Eur J Epidemiol 22, 527–532 (2007). https://doi.org/10.1007/s10654-007-9140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-007-9140-3

Keywords

Navigation