Skip to main content
Log in

Human health risks associated with metals in paddy plant (Oryza sativa) based on target hazard quotient and target cancer risk

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Paddy plants (Oryza sativa) contaminated with metals could be detrimental to human health if the concentrations of metals exceed the permissible limit. Thus, this study aims to assess the risk of the concentrations of As, Se, Cu, Cr, Co, and Ni and their distributions in various parts (roots, stems, leaves, and grains) of paddy plants collected from Sekinchan, Malaysia. Both soil and plant samples were digested according to the United States Environmental Protection Agency (USEPA) Method 3050B and the metal concentrations were determined by the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The highest mean translocation factor (TF) was from soil to roots (TF roots/soil ranged from 0.12 to 6.15) and the lowest was from leaves to grain (TF grain/leaves ranged from 0.06 to 0.87). Meanwhile, the bioaccumulation factor (BAF) for all metals was less than 1.0 indicating that paddy plants only absorb metals from the soil but do not accumulate in the grains. The average daily intake for As (1.15 ± 0.25 µg/kg/day) has exceeded the limit proposed by ATSDR and IRIS USEPA (0.30 µg/kg/day). Target cancer risk (TR) of 1.10 × 10–3 for As through rice consumption indicates that the potential cancer risk exists in one out of 1000 exposed individuals. The results from this study could serve as a reference for researchers and policymakers to monitor and formulate strategies in managing As and other metals in paddy plants, especially in Southeast Asian countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abtahi, M., Fakhri, Y., Oliveri Conti, G., Keramati, H., Zandsalimi, Y., Bahmani, Z., Hosseini Pouya, R., Sarkhosh, M., Moradi, B., Amanidaz, N., & Ghasemi, S. M. (2017). Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryza sativa) from Iran and associated risk assessment: A systematic review. Toxin Reviews, 36(4), 331–341. https://doi.org/10.1080/15569543.2017.1354307

    Article  CAS  Google Scholar 

  • Alfaraas, A., Khairiah, J., Ismail, B. S., & Noraini, T. (2016). Effects of heavy metal exposure on the morphological and microscopical characteristics of the paddy plant. Journal of Environmental Biology, 37(5), 955–963.

    CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • ATSDR. (2012). Relevance to public health: Chromium. In: Toxicological Profile for Chromium

  • Aziz, R. A., Rahim, S. A., Sahid, I., & Idris, W. M. R. (2015). Speciation and availability of heavy metals on serpentinized paddy soil and paddy tissue. Procedia - Social and Behavioural Sciences, 195, 1658–1665. https://doi.org/10.1016/j.sbspro.2015.06.235

    Article  Google Scholar 

  • Bakhat, H. F., Zia, Z., Fahad, S., Abbas, S., Hammad, H. M., Shahzad, A. N., Abbas, F., Alharby, H., & Shahid, M. (2017). Arsenic uptake, accumulation, and toxicity in rice plants: Possible remedies for its detoxification: A review. Environmental Science and Pollution Research, 24(10), 9142–9158. https://doi.org/10.1007/s11356-017-8462-2

    Article  CAS  Google Scholar 

  • Baruah, S. G., Ahmed, I., Das, B., Ingtipi, B., Boruah, H., Gupta, S. K., Nema, A. K., & Chabukdhara, M. (2021). Heavy metal(loid)s contamination and health risk assessment of soil-rice system in rural and peri-urban areas of lower Brahmaputra valley Northeast India. Chemosphere, 266, 129150. https://doi.org/10.1016/j.chemosphere.2020.129150

    Article  CAS  Google Scholar 

  • Bempah, C. K., & Ewusi, A. (2016). Heavy metals contamination and human health risk assessment around Obuasi Gold Mine in Ghana. Environmental Monitoring and Assessment, 188(5), 1–13. https://doi.org/10.1007/s10661-016-5241-3

    Article  CAS  Google Scholar 

  • Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Sun, C., He, B., & Wei, F. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, 1001–1009. https://doi.org/10.1016/j.scitotenv.2013.11.124

    Article  CAS  Google Scholar 

  • Cao, Z., Mou, R., Cao, Z., Lin, X., Xu, P., Chen, Z., Zhu, Z., & Chen, M. (2017). Nickel in milled rice (Oryza sativa L.) from the three main rice-producing regions in China. Food Additives and Contaminants: Part B Surveillance, 10(1), 69–77. https://doi.org/10.1080/19393210.2016.1250822

    Article  CAS  Google Scholar 

  • Chen, H., Yuan, X., Li, T., Hu, S., Ji, J., & Wang, C. (2016). Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China. Ecotoxicology and Environmental Safety, 126, 193–201. https://doi.org/10.1016/j.ecoenv.2015.12.042

    Article  CAS  Google Scholar 

  • Chi, L., Bian, X., Gao, B., Tu, P., Ru, H., & Lu, K. (2017). The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome. Toxicological Sciences, 160(2), 193–204. https://doi.org/10.1093/toxsci/kfx174

    Article  CAS  Google Scholar 

  • Cui, J. L., Zhao, Y. P., Lu, Y. J., Chan, T. S., Zhang, L. L., Tsang, D. C. W., & Li, X. D. (2019). Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Environment International, 126, 717–726. https://doi.org/10.1016/j.envint.2019.02.045

    Article  CAS  Google Scholar 

  • Cui, J.-L., Zhao, Y.-P., Lu, Y.-J., Chan, T.-S., Zhang, L.-L., Tsang, D. C. W., & Li, X.-D. (2019). Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted Paddy Soil: Implications for copper uptake mechanisms. Environment International, 126, 717–726. https://doi.org/10.1016/j.envint.2019.02.045

    Article  CAS  Google Scholar 

  • da Cheng, W., Zhang, G. P., Yao, H. G., Wu, W., & Xu, M. (2006). Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. Journal of Zhejiang University. Science B., 7(7), 565–571. https://doi.org/10.1631/jzus.2006.B0565

    Article  CAS  Google Scholar 

  • Dai, L., Lv, X., Chen, Z., Huang, Z., Li, B., Xie, Y., Duan, Y. F., Zhao, H., Wang, Y., Yu, Q., Li, S., Zhou, Y., & Shen, X. B. (2020). Elevated whole blood arsenic level is associated with type 2 diabetes in coal-burning areas in Guizhou. Toxicology and Applied Pharmacology, 403, 115315. https://doi.org/10.1016/j.taap.2020.115135

    Article  CAS  Google Scholar 

  • Du, Y., Chen, L., Ding, P., Liu, L., He, Q., Chen, B., & Duan, Y. (2019). Different exposure profile of heavy metal and health risk between residents near a Pb–Zn mine and a Mn mine in Huayuan county, South China. Chemosphere, 216, 352–364. https://doi.org/10.1016/j.chemosphere.2018.10.142

    Article  CAS  Google Scholar 

  • FAO, 2006. FAOSTAT. In: Food and Agriculture Organization of the United Nations. Available from: http://faostat.fao.org

  • Gao, J., Ye, X., Wang, X., Jiang, Y., Li, D., Ma, Y., & Sun, B. (2021). Derivation and validation of thresholds of cadmium, chromium, lead, mercury and arsenic for safe rice production in Paddy Soil. Ecotoxicology and Environmental Safety, 220, 112404. https://doi.org/10.1016/j.ecoenv.2021.112404

    Article  CAS  Google Scholar 

  • Ghazali, M. F., Wikantika, K., Harto, A. B., & Kondoh, A. (2020). Generating soil salinity, soil moisture, soil ph from satellite imagery and its analysis. Information Processing in Agriculture, 7(2), 294–306. https://doi.org/10.1016/j.inpa.2019.08.003

    Article  Google Scholar 

  • Giri, S., & Singh, A. K. (2017). Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt India. Environmental Science and Pollution Research, 24(17), 14945–14956. https://doi.org/10.1007/s11356-017-9039-9

    Article  CAS  Google Scholar 

  • Guo, B., Hong, C., Tong, W., Xu, M., Huang, C., Yin, H., Lin, Y., & Fu, Q. (2020). Health risk assessment of heavy metal pollution in a soil-rice system: A case study in the Jin-Qu Basin of China. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-68295-6

    Article  CAS  Google Scholar 

  • Hadif, W. M., Rahim, S. A., Sahid, I., Bhuiyan, A. R., & Ibrahim, I. (2015). Heavy metals accumulation in parts of Paddy Oryza sativa L. grown in paddy field adjacent to Ultrabasic Soil. In: AIP Conference Proceedings. https://doi.org/10.1063/1.4931221

  • Halim, M. A., Majumder, R. K., & Zaman, M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria Coal Mine Northwest Bangladesh. Arabian Journal of Geosciences, 8(6), 3391–3401. https://doi.org/10.1007/s12517-014-1480-1

    Article  CAS  Google Scholar 

  • Hang, X., Wang, H., Zhou, J., Ma, C., Du, C., & Chen, X. (2009). Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environmental Pollution, 157(8–9), 2542–2549. https://doi.org/10.1016/j.envpol.2009.03.002

    Article  CAS  Google Scholar 

  • Hassan, M. M., Atkins, P. J., & Dunn, C. E. (2005). Social implications of arsenic poisoning in Bangladesh. Social Science and Medicine, 61(10), 2201–2211. https://doi.org/10.1016/j.socscimed.2005.04.021

    Article  Google Scholar 

  • Hseu, Z. Y., & Lai, Y. J. (2017). Nickel accumulation in paddy rice on serpentine soils containing high geogenic nickel contents in Taiwan. Environmental Geochemistry and Health, 39(6), 1325–1334. https://doi.org/10.1007/s10653-017-9925-6

    Article  CAS  Google Scholar 

  • Huang, L., Liu, Y., Ferreira, J. F. S., Wang, M., Na, J., Huang, J., & Liang, Z. (2022). Long-term combined effects of tillage and rice cultivation with phosphogypsum or farmyard manure on the concentration of salts, minerals, and heavy metals of saline-sodic paddy fields in northeast China. Soil and Tillage Research, 215, 105222. https://doi.org/10.1016/j.still.2021.105222

    Article  Google Scholar 

  • Huang, Q., Liu, Q., Lin, L., Li, F. J., Han, Y., & Song, Z. G. (2018). Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles. Ecotoxicology and Environmental Safety, 159, 261–271. https://doi.org/10.1016/j.ecoenv.2018.05.008

    Article  CAS  Google Scholar 

  • IARC. (2012). Arsenic, metals, fibres, and dusts, Volume 100C. A Review of Human Carcinogens. http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf.

  • IRIS. (2007). Arsenic, inorganic; CASRN 7740-38-2 Chemical Assessment Summary.

  • IRIS. (2016). Regional Screening Level (RSL) Summary table. Retrieved from https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

  • Jia, Y., Wang, L., Qu, Z., Wang, C., & Yang, Z. (2017). Effects on heavy metal accumulation in freshwater fishes: Species, tissues, and sizes. Environmental Science and Pollution Research, 24(10), 9379–9386. https://doi.org/10.1007/s11356-017-8606-4

    Article  CAS  Google Scholar 

  • Jitaru, P., Millour, S., Roman, M., el Koulali, K., Noël, L., & Guérin, T. (2016). Exposure assessment of arsenic speciation in different rice types depending on the cooking mode. Journal of Food Composition and Analysis, 54, 37–47. https://doi.org/10.1016/j.jfca.2016.09.007

    Article  CAS  Google Scholar 

  • Juen, L. L., Ahmad, Z. A., Lim, W. Y., & Hazzeman, H. (2014). Bioconcentration and translocation efficiency of metals in paddy (Oryza sativa). Sains Malaysiana, 43(4), 521–528.

    CAS  Google Scholar 

  • Khan, I., Awan, S. A., Rizwan, M., Ali, S., Zhang, X., & Huang, L. (2021). Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A Review. Environmental Pollution, 286, 117389. https://doi.org/10.1016/j.envpol.2021.117389

    Article  CAS  Google Scholar 

  • Khanam, R., Kulsum, P. G. P. S., Mandal, B., Chand Hazra, G., & Kundu, D. (2022). The mechanistic pathways of arsenic transport in rice cultivars: Soil to mouth. Environmental Research, 204, 111942. https://doi.org/10.1016/j.envres.2021.111942

    Article  CAS  Google Scholar 

  • Kong, X., Liu, T., Yu, Z., Chen, Z., Lei, D., Wang, Z., Zhang, S., Zhang, H., & Li, Q. (2018). Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China. International Journal of Environmental Research and Public Health, 15(10), 2281. https://doi.org/10.3390/ijerph15102281

    Article  CAS  Google Scholar 

  • Kumar, A., Bhattacharya, T., Shaikh, W. A., Roy, A., Mukherjee, S., & Kumar, M. (2021). Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. Environmental Research, 200, 111758. https://doi.org/10.1016/j.envres.2021.111758

    Article  CAS  Google Scholar 

  • Li, Y., Fang, F., Wu, M., Kuang, Y., & Wu, H. (2018). Heavy metal contamination and health risk assessment in soil-rice system near Xinqiao mine in Tongling city, Anhui province China. Human and Ecological Risk Assessment, 24(3), 743–753. https://doi.org/10.1080/10807039.2017.1398631

    Article  CAS  Google Scholar 

  • Lian, M., Wang, J., Sun, L., Xu, Z., Tang, J., Yan, J., & Zeng, X. (2019). Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotoxicology and Environmental Safety, 169, 442–448. https://doi.org/10.1016/j.ecoenv.2018.11.046

    Article  CAS  Google Scholar 

  • Liu, J., Dhungana, B., & Cobb, G. P. (2018). Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and arsenic in rice plants. Environmental Toxicology and Chemistry, 37(1), 11–20. https://doi.org/10.1002/etc.3945

    Article  CAS  Google Scholar 

  • Liu, Z., Zhang, Q., Han, T., Ding, Y., Sun, J., Wang, F., & Zhu, C. (2016). Heavy metal pollution in a soil-rice system in the Yangtze River region of China. International Journal of Environmental Research and Public Health, 13(1), 63. https://doi.org/10.3390/ijerph13010063

    Article  CAS  Google Scholar 

  • Looi, L. J., Aris, A. Z., Yusoff, F. M., & Hashim, Z. (2015). Mercury contamination in the estuaries and coastal sediments of the Strait of Malacca. Environmental Monitoring and Assessment, 187(1), 1–15. https://doi.org/10.1007/s10661-014-4099-5

    Article  CAS  Google Scholar 

  • Maity, J. P., Chen, C. Y., Bhattacharya, P., Sharma, R. K., Ahmad, A., Patnaik, S., & Bundschuh, J. (2021). Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal. Journal of Hazardous Materials, 405, 123885. https://doi.org/10.1016/j.jhazmat.2020.123885

    Article  CAS  Google Scholar 

  • Mana, S. C. A., Fatt, N. T., & Ashraf, M. A. (2017). The fate and transport of arsenic species in the aquatic ecosystem: A case study on Bestari Jaya, Peninsular Malaysia. Environmental Science and Pollution Research, 24(29), 22799–22807. https://doi.org/10.1007/s11356-016-8195-7

    Article  CAS  Google Scholar 

  • Mao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., Yang, Z., Ayoko, G. A., Frost, R. L., & Theiss, F. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA, 175, 339–348. https://doi.org/10.1016/j.catena.2018.12.029

    Article  CAS  Google Scholar 

  • Mawia, A. M., Hui, S., Zhou, L., Li, H., Tabassum, J., Lai, C., Wang, J., Shao, G., Wei, X., Tang, S., Luo, J., Hu, S., & Hu, P. (2021). Inorganic arsenic toxicity and alleviation strategies in rice. Journal of Hazardous Materials, 408, 124751. https://doi.org/10.1016/j.jhazmat.2020.124751

    Article  CAS  Google Scholar 

  • Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., & Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad Iran. Methodsx, 6, 1642–1651. https://doi.org/10.1016/j.mex.2019.07.017

    Article  Google Scholar 

  • Mohd Hamdan, D. D., Mohd Azman, A. S., Musa, F., & Sabullah, M. K. (2020). Distribution of selected heavy metals bioaccumulation in various parts of indigenous rice (Bokilong, Ponsulak and Taragang) in North Borneo. Borneo Journal of Resource Science and Technology, 10(1), 61–69.

    Article  Google Scholar 

  • NHFPC (National Health and Family Planning Commission). (2015). 2014 report on Chinese resident's chronic disease and nutrition.

  • OECD-FAO. (2019). Agricultural outlook (2017–2028). Retrieved from https://stats.oecd.org/viewhtml.aspx?QueryId=91991&vh=0000&vf=0&l&il=&lang=en

  • Pokhrel, G. R., Wang, K. T., Zhuang, H. M., Wu, Y. C., Chen, W., Lan, Y., Zhu, X., Li, Z., Fu, F. F., & Yang, G. D. (2020). Effect of selenium in soil on the toxicity and uptake of arsenic in rice plant. Chemosphere, 239, 124712. https://doi.org/10.1016/j.chemosphere.2019.124712

    Article  CAS  Google Scholar 

  • Radojevic, M., & Bashkin, V. (2006). Practical environmental analysis. Cambridge: Royal Society of Chemistry.

    Book  Google Scholar 

  • Rahaman, M. S., Rahman, M. M., Mise, N., Sikder, M. T., Ichihara, G., Uddin, M. K., Kurasaki, M., & Ichihara, S. (2021). Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution, 289, 117940. https://doi.org/10.1016/j.envpol.2021.117940

    Article  CAS  Google Scholar 

  • Rahimi, G., Kolahchi, Z., & Charkhabi, A. (2017). Uptake and translocation of some heavy metals by rice crop (Oryza sativa) in paddy soils. Agriculture (Pol’nohospodárstvo), 63(4), 163–175. https://doi.org/10.1515/agri-2017-0016

    Article  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A., & Miah, M. A. M. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, 69(6), 942–948. https://doi.org/10.1016/j.chemosphere.2007.05.044

    Article  CAS  Google Scholar 

  • Razzaq, A., Ali, A., Safdar, L. B., Zafar, M. M., Rui, Y., Shakeel, A., Shaukat, A., Ashraf, M., Gong, W., & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science, 85(1), 14–20. https://doi.org/10.1111/1750-3841.14983

    Article  CAS  Google Scholar 

  • Rogan, N., Serafimovski, T., Dolenec, M., Tasev, G., & Dolenec, T. (2009). Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kočani field (Macedonia). Environmental Geochemistry and Health, 31(4), 439–451. https://doi.org/10.1007/s10653-008-9197-2

    Article  CAS  Google Scholar 

  • Roslaili, A. A., Sahibin, A. R., Ismail, S., Idris, W. M. R., & Bhuiyan, M. A. R. (2015). Determination of heavy metals uptake in soil and paddy plants. American-Eurasian Journal of Agriculture & Environmental Science, 15(2), 161–164.

    Google Scholar 

  • Saifullah, S. D., Naeem, A., Iqbal, M., Farooq, M. A., Bibi, S., & Rengel, Z. (2018). Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Chemosphere, 194, 171–188. https://doi.org/10.1016/j.chemosphere.2017.11.149

    Article  CAS  Google Scholar 

  • Satpathy, D., Reddy, M. V., & Dhal, S. P. (2014). Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/545473

    Article  Google Scholar 

  • Shrivastava, A., Barla, A., Majumdar, A., Singh, S., & Bose, S. (2020). Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices. Chemosphere, 238, 124988. https://doi.org/10.1016/j.chemosphere.2019.124988

    Article  CAS  Google Scholar 

  • Smits, J. E., Krohn, R. M., Akhtar, E., Hore, S. K., Yunus, M., Vandenberg, A., & Raqib, R. (2019). Food as medicine: Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh. Environmental Research, 176, 108561. https://doi.org/10.1016/j.envres.2019.108561

    Article  CAS  Google Scholar 

  • Spanu, A., Langasco, I., Serra, M., Deroma, M. A., Spano, N., Barracu, F., Pilo, M. I., & Sanna, G. (2021). Sprinkler irrigation in the production of safe rice by soils heavily polluted by arsenic and cadmium. Chemosphere, 277, 130351. https://doi.org/10.1016/j.chemosphere.2021.130351

    Article  CAS  Google Scholar 

  • Spanu, A., Langasco, I., Valente, M., Deroma, M. A., Spano, N., Barracu, F., Pilo, M. I., & Sanna, G. (2020). Tuning of the amount of Se in rice (Oryza sativa) grain by varying the nature of the irrigation method: Development of an ICP-MS analytical protocol, validation, and application to 26 different rice genotypes. Molecules, 25(8), 1861. https://doi.org/10.3390/molecules25081861

    Article  CAS  Google Scholar 

  • Tariq, S. R., & Rashid, N. (2013). Multivariate analysis of metal levels in paddy soil, rice plants, and rice grains: A case study from Shakargarh, Pakistan. Journal of Chemistry, 2013, 1–10. https://doi.org/10.1155/2013/539251

    Article  CAS  Google Scholar 

  • USEPA. United States Environmental Protection Agency (1989). Risk assessment guidance for superfund, vol. I, Human Health Evaluation Manual. Part A (Interim Final), EPA/540/1-89/002. Office of Emergency and Remedial Response, US Environmental Protection Agency

  • USEPA. United States Environmental Protection Agency (1996). Method 3050B. Acid digestion of sediments, sludges and soils, pp. 1–12.

  • USEPA. United States Environmental Protection Agency (2001). Risk assessment guidance for superfund: Volume III - Part A, Process for Conducting Probabilistic Risk Assessment.

  • USEPA. United States Environmental Protection Agency (2007). United States Environmental Protection Agency, Integrated Risk Information System database

  • USEPA. United States Environmental Protection Agency (2015). Regional Screening Level (RSL) Summary Table, November 2015.

  • Wang, L., Ma, L., & Yang, Z. (2018). Spatial variation and risk assessment of heavy metals in paddy rice from Hunan Province, Southern China. International Journal of Environmental Science and Technology, 15(7), 1561–1572. https://doi.org/10.1007/s13762-017-1504-y

    Article  CAS  Google Scholar 

  • Williams, P. N., Islam, S., Islam, R., Jahiruddin, M., Adomako, E., Soliaman, A. R. M., Rahman, G. K. M. M., Lu, Y., Deacon, C., Zhu, Y. G., & Meharg, A. A. (2009). Arsenic limits trace mineral nutrition (Selenium, Zinc, and Nickel) in Bangladesh rice grain. Environmental Science and Technology, 43(21), 8430–8436. https://doi.org/10.1021/es901825t

    Article  CAS  Google Scholar 

  • Xiao, L., Guan, D., Peart, M. R., Chen, Y., Li, Q., & Dai, J. (2017). The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain. Chemosphere, 185, 868–878. https://doi.org/10.1016/j.chemosphere.2017.07.096

    Article  CAS  Google Scholar 

  • Xiao, R., Guo, D., Ali, A., Mi, S., Liu, T., Ren, C., Li, R., & Zhang, Z. (2019). Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in Paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution, 248, 349–357. https://doi.org/10.1016/j.envpol.2019.02.045

    Article  CAS  Google Scholar 

  • Yang, Y. P., Zhang, H. M., Yuan, H. Y., Duan, G. L., Jin, D. C., Zhao, F. J., & Zhu, Y. G. (2018). Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution, 236, 598–608. https://doi.org/10.1016/j.envpol.2018.01.099

    Article  CAS  Google Scholar 

  • Yap, D. W., Adezrian, J., Khairiah, J., Ismail, B. S., & Ahmad-Mahir, R. (2009). The uptake of heavy metals by paddy plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. American-Eurasian Journal of Agriculture and Environmental Science, 6(1), 16–19.

    CAS  Google Scholar 

  • Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in southeast Asia. Environmental Geochemistry and Health, 26, 343–357.

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, H., Zhou, Y., Dou, L., Cai, L., Mo, L., & You, J. (2018). Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environmental Pollution, 235, 710–719. https://doi.org/10.1016/j.envpol.2017.12.106

    Article  CAS  Google Scholar 

  • Zhang, L., Mo, Z., Qin, J., Li, Q., Wei, Y., Ma, S., Xiong, Y., Liang, G., Qing, L., Chen, Z., Yang, X., Zhang, Z., & Zou, Y. (2015). Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China. Science of the Total Environment, 530–531, 163–170. https://doi.org/10.1016/j.scitotenv.2015.05.100

    Article  CAS  Google Scholar 

  • Zhang, Z., Wu, X., Tu, C., Huang, X., Zhang, J. C., Fang, H., Huo, H., & Lin, C. (2020). Relationships between soil properties and the accumulation of heavy metals in different brassica campestris l growth stages in a karst mountainous area. Ecotoxicology and Environmental Safety, 206, 111150. https://doi.org/10.1016/j.ecoenv.2020.111150

    Article  CAS  Google Scholar 

  • Zhao, K., Fu, W., Qiu, Q., Ye, Z., Li, Y., Tunney, H., Dou, C., Zhou, K., & Qian, X. (2019). Spatial patterns of potentially hazardous metals in paddy soils in a typical electrical waste dismantling area and their pollution characteristics. Geoderma, 337, 453–462. https://doi.org/10.1016/j.geoderma.2018.10.004

    Article  CAS  Google Scholar 

  • Zhao, K., Fu, W., Ye, Z., & Zhang, C. (2015). Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, southeastern China. International Journal of Environmental Research and Public Health, 12(2), 1577–1594. https://doi.org/10.3390/ijerph120201577

    Article  CAS  Google Scholar 

  • Zheng, S., Wang, Q., Yuan, Y., & Sun, W. (2020). Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemistry, 316, 126213. https://doi.org/10.1016/j.foodchem.2020.126213

    Article  CAS  Google Scholar 

  • Zulkafflee, N. S., Redzuan, N. A., Selamat, J., Ismail, M. R., Praveena, S. M., & Razis, A. F. (2020). Evaluation of heavy metal contamination in paddy plants at the northern region of Malaysia using ICPMS and its risk assessment. Plants, 10(1), 3. https://doi.org/10.3390/plants10010003

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Putra Grant (GP-IPM/2019/9679100) from Universiti Putra Malaysia. The authors would wish to thank Mr. Allen Lim, Ms. Nasirah binti Aderis @ Idris, Ms. Hadirah Nasuha binti Hassan for their help during sampling activities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SAC. The first draft of the manuscript was written by GAQ, while the final draft and additional analysis were conducted by RN. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ley Juen Looi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest throughout this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navaretnam, R., Soong, A.C., Goo, A.Q. et al. Human health risks associated with metals in paddy plant (Oryza sativa) based on target hazard quotient and target cancer risk. Environ Geochem Health 45, 2309–2327 (2023). https://doi.org/10.1007/s10653-022-01344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01344-3

Keywords

Navigation