Skip to main content

Advertisement

Log in

Identification of high ecological risk areas with naturally high background value of soil Cd related to carbonate rocks

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The characteristics of high concentrations or high activity levels of heavy metals, especially Cd, in soils caused by the pedogenesis of rocks are attracting increased attention. Carbonate rocks and black shales often coexist during geological deposition, but the risk characteristics of heavy metals are different after their weathering into the soil. The purpose of this study was to investigate the element concentrations of a naturally high background value area, to identify patterns of different risk areas, and to make recommendations for the safe usage of farmland. The results showed that, compared with the soil in the carbonate rock area, the soil in the black shale area was more acidified and most of the heavy metal elements were leached. Based on the soil pH value and the heavy metal concentrations, an identification method for land risk areas within naturally high background values was established, and land planning was carried out using this method. The exceeding rates of Cd in rice for the preferential protection area and strict control area were 0.0 and 50.0%, respectively. Therefore, in naturally high background area, the identified lithology can apply to maximize the use of farmland resources. This method provides a basis for preliminary ecological risk screening in naturally high background value areas using the results of the soil survey. A suggestion for the prevention and control of soil pollution in areas with naturally high background values was put forward. In carbonate rock areas, the soil should be closely monitored to prevent soil acidification.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Available on demand.

References

  • Åkesson, A., Barregard, L., Bergdahl, I. A., Nordberg, G. F., Nordberg, M., & Skerfving, S. (2014). Non-renal effects and the risk assessment of environmental cadmium exposure. Environmental Health Perspectives, 122, 431–438. https://doi.org/10.1289/ehp.1307110

    Article  Google Scholar 

  • Aoshima, K. (2016). Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium-historical review and perspectives. Soil Science and Plant Nutrition, 62, 319–326. https://doi.org/10.1080/00380768.2016.1159116

    Article  CAS  Google Scholar 

  • Appel, C., & Ma, L. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality, 31, 581–589. https://doi.org/10.1006/jema.2001.0557

    Article  CAS  Google Scholar 

  • Armstrong, J. G. T., Parnell, J., Bullock, L. A., Boyce, A. J., Perez, M., & Feldmann, J. (2019). Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in west Ireland. Applied Geochemistry, 109, 104401. https://doi.org/10.1016/j.apgeochem.2019.104401

    Article  CAS  Google Scholar 

  • Barbier, F., Duc, G., & Petit-Ramel, M. (2000). Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface. Colloids and surfaces A, Physicochemical and Engineering Aspects, 166, 153–159. https://doi.org/10.1016/S0927-7757(99)00501-4

    Article  CAS  Google Scholar 

  • Callagon, E. B. R., Lee, S. S., Eng, P. J., Laanait, N., Sturchio, N. C., Nagy, K. L., & Fenter, P. (2017). Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. Geochimica et Cosmochimica Acta, 205, 360–380. https://doi.org/10.1016/j.gca.2016.12.007

    Article  CAS  Google Scholar 

  • Cameron, E. M., & Doidge, Bill. (1998). Recent (1930s) natural acidification and fish-kill in a lake that was an important food source for an Inuit community in northern Québec, Canada. Journal of Geochemical Exploration, 64(1–3), 197–213. https://doi.org/10.1016/S0375-6742(98)00033-8

    Article  CAS  Google Scholar 

  • CCME Canadian Council of Ministers of the Environment, (1999). Canadian environmental quality guidelines: soil quality guidelines for the protection of environmental and human health[S /OL]. http:∥ceq-rcqe.ccme.ca /.

  • Chen, H., Tang, Z., Wang, P., & Zhao, F. (2018). Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 238, 482–490. https://doi.org/10.1016/j.envpol.2018.03.048

    Article  CAS  Google Scholar 

  • Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: The key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92–99. https://doi.org/10.1016/j.tplants.2012.08.003

    Article  CAS  Google Scholar 

  • CSC China State Council, (2016). The action plan for soil pollution prevention and control. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm (Accessed on September) (in Chinese)

  • Duan, Y., Yang, Z., Yu, T., Yang, Q., Liu, X., Ji, W., Jiang, H., Zhuo, X., Wu, T., Qin, J., & Wang, L. (2020). Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai Guangxi. Environmental Pollution, 260, 113905. https://doi.org/10.1016/j.envpol.2019.113905

    Article  CAS  Google Scholar 

  • Duffner, A., Hoffland, E., Weng, L., & van der Zee, S. E. A. T. (2013). Predicting zinc bioavailability to wheat improves by integrating pH dependent nonlinear root surface adsorption. Plant and Soil, 373, 919–930. https://doi.org/10.1007/s11104-013-1845-3

    Article  CAS  Google Scholar 

  • EA Environment Agency, (2008). Guidance on the use of soil screening values in ecological risk assessment[R]. Science Report SC070009/SR2b. Bristol: Environment Agency

  • Emmings, J. F., Davies, S. J., Vane, C. H., Moss Hayes, V., & Stephenson, M. H. (2019). From marine bands to hybrid flows: Sedimentology of a Mississippian black shale. Sedimentology, 67, 261–304. https://doi.org/10.1111/sed.12642

    Article  Google Scholar 

  • Feng, Z., Qiang, M. A., Shipeng, L. I., et al. (2013). Weathering mechanism of rock-soil interface in weathering profile derived from carbonate rocks: Preliminary study of leaching simulation in rock powder layer. Acta Geologica Sinica, 87(1), 119–132. (in Chinese).

    CAS  Google Scholar 

  • Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1, 22. https://doi.org/10.1186/1745-6673-1-22

    Article  CAS  Google Scholar 

  • Grant, C. N., Dennis, H. T., Antoine, J. M. R., Hoo-Fung, L. A., & Lalor, G. C. (2013). Agglomerative hierarchical clustering analysis of twenty-six rice samples analysed by instrumental neutron activation analysis and other techniques. Journal of Radioanalytical and Nuclear Chemistry, 297, 233–239. https://doi.org/10.1007/s10967-012-2379-5

    Article  CAS  Google Scholar 

  • Grawunder, A., Lonschinski, M., Merten, D., & Büchel, G. (2009). Distribution and bonding of residual contamination in glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia, Germany. Geochemistry, 69, 5–19. https://doi.org/10.1016/j.chemer.2008.06.001

    Article  CAS  Google Scholar 

  • Gu, Q., Yang, Z., Yu, T., Ji, J., Hou, Q., & Zhang, Q. (2019). Application of ecogeochemical prediction model to safely exploit seleniferous soil. Ecotoxicology and Environmental Safety, 177, 133–139. https://doi.org/10.1016/j.ecoenv.2019.03.084

    Article  CAS  Google Scholar 

  • Gu, X., Evans, L. J., & Barabash, S. J. (2010). Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochimica et Cosmochimica Acta, 74, 5718–5728. https://doi.org/10.1016/j.gca.2010.07.016

    Article  CAS  Google Scholar 

  • He, T., Lu, S., Li, W., Wang, W., Sun, D., Pan, W., & Zhang, B. (2020). Geochemical characteristics and effectiveness of thick, black shales in southwestern depression, Tarim Basin. Journal of Petroleum Science and Engineering, 185, 106607. https://doi.org/10.1016/j.petrol.2019.106607

    Article  CAS  Google Scholar 

  • Hu, D., Wei, Z., Liu, R., Fan, Z., & Han, J. (2019). Development characteristics and exploration potential of the lower carboniferous black shale in the Guizhong depression. Natural Gas Industry B, 6, 205–214. https://doi.org/10.1016/j.ngib.2018.10.003

    Article  Google Scholar 

  • JECFA (2010) JOINT FAO/WHO expert committee on food additives in seventy-third meeting geneva, World Health Organization 8–17 June 2010

  • Ji, H., Wang, S., Ouyang, Z., Zhang, S., Sun, C., Liu, X., & Zhou, D. (2004). Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau. Chemical Geology, 203, 1–27. https://doi.org/10.1016/j.chemgeo.2003.08.012

    Article  CAS  Google Scholar 

  • Ji, W., Yang, Z., Yu, T., Yang, Q., Wen, Y., & Wu, T. (2020). Potential ecological risk assessment of heavy metals in the Fe-Mn nodules in the Karst area of Guangxi. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-020-02837-6

    Book  Google Scholar 

  • Jiang W., (2018). Simulation experiment study on the bending oxidation-acid eroded reaction of black shale, Vol. Master’s degree. Southwest Jiaotong University (in Chinese)

  • Kargbo, D. M., Atallah, G., & Chatterjee, S. (2004). Inhibition of pyrite oxidation by a phospholipid in the presence of silicate. Environmental Science & Technology, 38, 3432–3441. https://doi.org/10.1021/es0352552

    Article  CAS  Google Scholar 

  • Lavergren, U., Åström, M. E., Bergbäck, B., & Holmström, H. (2009). Mobility of trace elements in black shale assessed by leaching tests and sequential chemical extraction. Geochemistry: Exploration Environment, Analysis, 9, 71–79. https://doi.org/10.1144/1467-7873/08-188

    Article  CAS  Google Scholar 

  • Li, C., Yang, Z., Yu, T., Hou, Q., Liu, X., Wang, J., Zhang, Q., & Wu, T. (2021). Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: A case study of Heng County Guangxi. Ecotoxicology and Environmental Safety, 208, 111505. https://doi.org/10.1016/j.ecoenv.2020.111505

    Article  CAS  Google Scholar 

  • Liu, Y., Xiao, T., Perkins, R. B., Zhu, J., Zhu, Z., Xiong, Y., & Ning, Z. (2017). Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 176, 42–49. https://doi.org/10.1016/j.gexplo.2016.04.004

    Article  CAS  Google Scholar 

  • Lu, G., et al. (2016). Technical Report of Land Quality Geochemical Evaluation in the Luzhai County. Guangxi Institute of Geological Regional Survey, Guiling: Guangxi.

    Google Scholar 

  • Lund, O. P., Vaughan, J. G., & Thirumurthi, D. (1987). Impact of acid drainage pollution from mineralized slate at halifax airport. Water Pollution Research Journal of Canada, 22, 308–325. https://doi.org/10.2166/wqrj.1987.024

    Article  CAS  Google Scholar 

  • MEE Ministry of Ecology and Environment of the People’s Republic of China, (2018). Soil environmental quality-risk control standards for soil contamination of agricultural land (GB 15618-2018)

  • MLR, C., (2016). Specification of Land Quality Geochemical Assessment, DZ/T 0295-2016

  • Nganje, T. N., Edet, A., Cuthbert, S., Adamu, C. I., & Hursthouse, A. S. (2020). The concentration, distribution and health risk from potentially toxic elements in the soil-plant-water system developed on black shales in SE Nigeria. Journal of African Earth Sciences, 165, 103806. https://doi.org/10.1016/j.jafrearsci.2020.103806

    Article  CAS  Google Scholar 

  • NHFPC, CFDA, (2017). National food safety standards: limit of pollutants in food (GB 2762-2017). Chinese National Standard Agency, Beijing, China (in Chinese)

  • NMIE Netherlands Ministry of Infrastructure and the Environment, (2013). Soil remediation circular 2013[Z]

  • Parviainen, A., & Loukola-Ruskeeniemi, K. (2019). Environmental impact of mineralised black shales. Earth-Science Reviews, 192, 65–90. https://doi.org/10.1016/j.earscirev.2019.01.017

    Article  CAS  Google Scholar 

  • Peng, B., Piestrzynski, A., Pieczonka, J., Xiao, M., Wang, Y., Xie, S., Tang, X., Yu, C., & Song, Z. (2007). Mineralogical and geochemical constraints on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China. Environmental Geology, 52, 1277–1296. https://doi.org/10.1007/s00254-006-0567-8

    Article  CAS  Google Scholar 

  • Peng, B., Song, Z., Tu, X., Xiao, M., Wu, F., & Lv, H. (2004). Release of heavy metals during weathering of the lower Cambrian black shales in western Hunan, China. Environmental Geology, 45, 1137–1147. https://doi.org/10.1007/s00254-004-0974-7

    Article  CAS  Google Scholar 

  • Perkins, R. B., & Mason, C. E. (2015). The relative mobility of trace elements from short-term weathering of a black shale. Applied Geochemistry, 56, 67–79. https://doi.org/10.1016/j.apgeochem.2015.01.014

    Article  CAS  Google Scholar 

  • Qu, S., Wu, W., Nel, W., & Ji, J. (2020). The behavior of metals/metalloids during natural weathering: A systematic study of the mono-lithological watersheds in the upper pearl river basin China. Science of The Total Environment, 708, 134572. https://doi.org/10.1016/j.scitotenv.2019.134572

    Article  CAS  Google Scholar 

  • Quezada-Hinojosa, R. P., Föllmi, K. B., Verrecchia, E., Adatte, T., & Matera, V. (2015). Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena, 125, 10–32. https://doi.org/10.1016/j.catena.2014.10.003

    Article  CAS  Google Scholar 

  • Quezada-Hinojosa, R. P., Matera, V., Adatte, T., Rambeau, C., & Föllmi, K. B. (2009). Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma, 150, 287–301. https://doi.org/10.1016/j.geoderma.2009.02.013

    Article  CAS  Google Scholar 

  • Rudnick, R., & Gao, S. (2014). Composition of the Continental Crust. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

    Article  Google Scholar 

  • Satur, J., Hiroyoshi, N., Tsunekawa, M., Ito, M., & Okamoto, H. (2007). Carrier-microencapsulation for preventing pyrite oxidation. International Journal of Mineral Processing, 83, 116–124. https://doi.org/10.1016/j.minpro.2007.06.003

    Article  CAS  Google Scholar 

  • Smith, L. B., Schieber, J., & Wilson, R. D. (2019). Shallow-water onlap model for the deposition of Devonian black shales in New York, USA. Geology, 47, 279–283. https://doi.org/10.1130/G45569.1

    Article  CAS  Google Scholar 

  • SNEA Singapore National Environmental Agency, (2020). Guideline on environmental baseline study[S/OL]. http:∥www.jtc. gov.sg/

  • Srivastava, P., Singh, B., & Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 28–38. https://doi.org/10.1016/j.jcis.2005.04.036

    Article  CAS  Google Scholar 

  • Sun, Y. Z., & Leischner, L. G. B. (2000). Residuary toxic elements and PAHs in sediments of the zbiornik gilow tailings pond and zimmica stream from Lubin district, Southwest Poland. Environmental Geochemistry & Health, 22, 249–261. https://doi.org/10.1023/A:1026501817763

    Article  CAS  Google Scholar 

  • Tabelin, C. B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E. M., Ito, M., & Hiroyoshi, N. (2018). Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Science of The Total Environment, 645, 1522–1553. https://doi.org/10.1016/j.scitotenv.2018.07.103

    Article  CAS  Google Scholar 

  • Tang, X., Zhang, J., Liu, Y., Yang, C., Chen, Q., Dang, W., & Zhao, P. (2018). Geochemistry of organic matter and elements of black shale during weathering in Northern Guizhou, Southwestern China: Their mobilization and inter-connection. Geochemistry, 78, 140–151. https://doi.org/10.1016/j.chemer.2017.08.002

    Article  CAS  Google Scholar 

  • Tuttle, M. L. W., Breit, G. N., & Goldhaber, M. B. (2009). Weathering of the new Albany shale, Kentucky: II. redistribution of minor and trace elements. Applied Geochemistry, 24, 1565–1578. https://doi.org/10.1016/j.apgeochem.2009.04.034

    Article  CAS  Google Scholar 

  • USEPA U.S. Environmental Protection Agency, (2002). Supplemental guidance for developing soil screening levels for superfund sites[S]. Office of Solid Waste and Emergency Response, OSWER 9355.4–24. Washington DC, USA

  • USEPA U.S. Environmental Protection Agency, 2005. Ecological soil screening levels for cadmium interim final[S]. Office of Solid Waste and Emergency Response, OSWER Directive 9285.7-65. Washington DC, USA

  • Vingiani, S., Di Iorio, E., Colombo, C., & Terribile, F. (2018). Integrated study of red mediterranean soils from Southern Italy. Catena, 168, 129–140. https://doi.org/10.1016/j.catena.2018.01.002

    Article  CAS  Google Scholar 

  • Wang, G., & Lin, Y. (2016). a preliminary study on development of soil environmental management and environmental standards system in china in accordance with the SPPCAP. Chinese Journal of Environmental Management, 8, 39–43. (in Chinese).

    Google Scholar 

  • Wang, S., Ji, H., Ouyang, Z., et al. (1999). Preliminary study on carbonate rock weathering and soil formation. Science China Earth Sciences, 29, 441–449. (in Chinese).

    Google Scholar 

  • Wei, X., Ji, H., Wang, S., Chu, H., & Song, C. (2014). The formation of representative lateritic weathering covers in south-central Guangxi (southern China). Catena, 118, 55–72. https://doi.org/10.1016/j.catena.2014.01.019

    Article  CAS  Google Scholar 

  • Wen, Y., Li, W., Yang, Z., Zhang, Q., & Ji, J. (2020). Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region Southwestern China. Chemosphere, 245, 125620. https://doi.org/10.1016/j.chemosphere.2019.125620

    Article  CAS  Google Scholar 

  • Wen, Y., Li, W., Yang, Z., Zhuo, X., Guan, D., Song, Y., Guo, C., & Ji, J. (2020). Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region Southwestern China. Environmental Pollution, 258, 113645. https://doi.org/10.1016/j.envpol.2019.113645

    Article  CAS  Google Scholar 

  • Wennrich, R., Mattusch, J. R., Morgenstern, P., Freyer, K., Treutler, H., St Rk, H., Br Ggemann, L., Paschke, A., Daus, B., & Weiss, H. (2004). Characterization of sediments in an abandoned mining area; A case study of Mansfeld region, Germany. Environmental Geology, 45, 818–833. https://doi.org/10.1007/s00254-003-0942-7

    Article  CAS  Google Scholar 

  • Wilke, F. D. H., Vieth-Hillebrand, A., Naumann, R., Erzinger, J., & Horsfield, B. (2015). Induced mobility of inorganic and organic solutes from black shales using water extraction: Implications for shale gas exploitation. Applied Geochemistry, 63, 158–168. https://doi.org/10.1016/j.apgeochem.2015.07.008

    Article  CAS  Google Scholar 

  • Wu, P., Liu, C., Yang, Y., et al. (2001). Release and transport of (heavy) metals and their environmental effect in mining activities. Acta Mineralogica Sinica, 21, 213–218. (in Chinese).

    CAS  Google Scholar 

  • Xia, X., et al. (2022). Carbonate bedrock control of soil Cd background in Southwestern China: Its extent and influencing factors based on spatial analysis. Chemosphere., 290, 133390. https://doi.org/10.1016/j.chemosphere.2021.133390

    Article  CAS  Google Scholar 

  • Xu, R. (2015). Research Progresses in Soil Acidification and Its Control. Soils, 47(2), 238–244. (in Chinese).

    CAS  Google Scholar 

  • Yamasaki, S., Takeda, A., Nunohara, K., & Tsuchiya, N. (2013). Red soils derived from limestone contain higher amounts of trace elements than those derived from various other parent materials. Soil science and plant nutrition (Tokyo), 59, 692–699. https://doi.org/10.1080/00380768.2013.822301

    Article  CAS  Google Scholar 

  • Yang, Z., et al. (2022). Study on the genesis and ecological effect of Se, Ge, and Cd in Soil of Guangxi. Guangxi bureau of Geology & Mineral Prospecting & Exploitation.

    Google Scholar 

  • Yang, Q., Yang, Z., Filippelli, G. M., Ji, J., Ji, W., Liu, X., Wang, L., Yu, T., Wu, T., Zhuo, X., & Zhang, Q. (2021a). Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi China. Chemical Geology, 567, 120081. https://doi.org/10.1016/j.chemgeo.2021.120081

    Article  CAS  Google Scholar 

  • Yang, Q., Yang, Z., Zhang, Q., Liu, X., Zhuo, X., Wu, T., Wang, L., Wei, X., & Ji, J. (2021b). Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China. Science China Earth Sciences, 64, 1126–1139. https://doi.org/10.1007/s11430-020-9763-0

    Article  CAS  Google Scholar 

  • Yang, Y., Li, C., Yang, Z., Yu, T., Jiang, H., Han, M., Liu, X., Wang, J., & Zhang, Q. (2021c). Application of cadmium prediction models for rice and maize in the safe utilization of farmland associated with tin mining in Hezhou, Guangxi China. Environmental Pollution, 285, 117202. https://doi.org/10.1016/j.envpol.2021.117202

    Article  CAS  Google Scholar 

  • Yang, Z., Yu, T., Hou, Q., Xia, X., Feng, H., Huang, C., Wang, L., Lv, Y., & Zhang, M. (2014). Geochemical evaluation of land quality in China and its applications. Journal of Geochemical Exploration, 139, 122–135. https://doi.org/10.1016/j.gexplo.2013.07.014

    Article  CAS  Google Scholar 

  • Yu, C., Peng, B., Peltola, P., Tang, X., & Xie, S. (2012). Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, PR. China. Environmental Geochemistry and Health, 34, 375–390. https://doi.org/10.1007/s10653-011-9398-y

    Article  CAS  Google Scholar 

  • Zhang, C., & Lalor, G. (2002). Multivariate relationships and spatial distribution of geochemical features of soils in Jamaica. Chemical Speciation and Bioavailability, 14, 57–65. https://doi.org/10.3184/095422902782775326

    Article  Google Scholar 

  • Zhang, S., Song, J., Cheng, Y., & McBride, M. B. (2018). Derivation of regional risk screening values and intervention values for cadmium-contaminated agricultural land in the Guizhou Plateau. Land Degradation & Development, 29, 2366–2377. https://doi.org/10.1002/ldr.3034

    Article  Google Scholar 

  • Zhang, X., Chen, D., Zhong, T., Zhang, X., Cheng, M., & Li, X. (2015). Assessment of cadmium (Cd) concentration in arable soil in China. Environmental Science and Pollution Research, 22, 4932–4941. https://doi.org/10.1007/s11356-014-3892-6

    Article  CAS  Google Scholar 

  • Zhao, F., Ma, Y., Zhu, Y., Tang, Z., & McGrath, S. P. (2015). Soil contamination in China: Current status and mitigation strategies. Environmental Science & Technology, 49, 750–759. https://doi.org/10.1021/es5047099

    Article  CAS  Google Scholar 

  • Zhong, C., Feng, Z., Jiang, W., Xiao, L., Zhang, X., Zhao, Y., & Lin, Q. (2020). Evaluation of geogenic cadmium bioavailability in soil-rice system with high geochemical background caused by black shales. Journal of Soils and Sediments, 21, 1053–1063. https://doi.org/10.1007/s11368-020-02802-0

    Article  CAS  Google Scholar 

  • Zhou, Z., Chen, Z., Pan, H., Sun, B., Zeng, D., He, L., Yang, R., & Zhou, G. (2018). Cadmium contamination in soils and crops in four mining areas, China. Journal of Geochemical Exploration, 192, 72–84. https://doi.org/10.1016/j.gexplo.2018.06.003

    Article  CAS  Google Scholar 

  • Zhu, Z., Yao, G., Lou, Z., Jin, A., Zhu, R., Jin, C., & Chen, C. (2018). Upper Paleozoic marine shale characteristics and exploration prospects in the Northwestern Guizhong depression, South China. Journal of Ocean University of China, 17, 773–790. https://doi.org/10.1007/s11802-018-3440-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the anonymous reviewers for help in improving this paper.

Funding

This work was supported by the Geological Survey Achievement Conversion Foundation of China University of Geosciences (Beijing), the Project of Geochemical Study on Selenium and Heavy Metal Elements in Central−Eastern Area of Guangxi, China (2015−2016), Study on the Genesis and Ecological Effect of Se, Ge, and Cd in Soil of Guangxi, China (2017−2019), Ecological and Geochemical Survey and Study on the Heavy Metals in Typical Soil of Guangxi, China (2018−2019), Pollution Identification and Ecological Risk Assessment on Heavy Metals of Soil in the Area with High Geochemical Background in Guangxi, China (2017−2018), Guangxi Key Research and Development Plan (GUIKEAB18050024). Projects of Land Quality Geochemical Assessment of Guangxi, the Public Welfare Geological Survey Project of Shaanxi Province, China (Health Geological Survey and Evaluation of Qinba Mountain Area, Granted No. 202201).

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to conceptualization, methodology, formal analysis, investigation, writing—original draft, writing—review and editing, and visualization. TY and CZ contributed to writing—review and editing. CL and BL contributed to investigation and resources. ZY contributed to conceptualization, writing—review and editing, supervision, and project administration. QY contributed to data curation. YD and WJ contributed to investigation and resources. TW contributed to supervision, project administration, and funding acquisition. LW contributed to investigation and resources.

Corresponding author

Correspondence to Zhongfang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yu, T., Zhang, C. et al. Identification of high ecological risk areas with naturally high background value of soil Cd related to carbonate rocks. Environ Geochem Health 45, 1861–1876 (2023). https://doi.org/10.1007/s10653-022-01308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01308-7

Keywords

Navigation