Skip to main content

Advertisement

Log in

Fate of endosulfan in ginseng farm and effect of granular biochar treatment on endosulfan accumulation in ginseng

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Endosulfan was widely used as an insecticide in the agricultural sector before its environmental persistence was fully understood. Although its fate and transport in the environment have been studied, the effects of historic endosulfan residues in soil and its bioaccumulation in crops are not well understood. This knowledge gap was addressed by investigating the dissipation and bioaccumulation of endosulfan in ginseng as a perennial crop in fresh and aged endosulfan-contaminated fields. In addition, the effect of granular biochar (GBC) treatment on the bioaccumulation factor (BAF) of endosulfan residue in ginseng was assessed. The 50% dissipation time (DT50) of the total endosulfan was over 770 days in both the fresh and aged soils under mulching conditions. This was at least twofold greater than the reported (6– > 200 days) in arable soil. Among the endosulfan congeners, the main contributor to the soil residue was endosulfan sulfate, as observed from 150 days after treatment. The BAF for the 2-year-old ginseng was similar in the fresh (1.682–2.055) and aged (1.372–2.570) soils, whereas the BAF for the 3-year-old ginseng in the aged soil (1.087–1.137) was lower than that in the fresh soil (1.771–2.387). The treatment with 0.3 wt% GBC extended the DT50 of endosulfan in soil; however, this could successfully suppress endosulfan uptake, and reduced the BAFs by 66.5–67.7% in the freshly contaminated soil and 32.3–41.4% in the aged soil. Thus, this adsorbent treatment could be an effective, financially viable, and sustainable option to protect human health by reducing plant uptake of endosulfan from contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., et al. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319.

    Article  CAS  Google Scholar 

  • Ahmad, K. S. (2019). Adsorption removal of endosulfan through Saccharum officinarum derived activated carbon from selected soils. Journal of Central South University, 26, 146–157.

    Article  CAS  Google Scholar 

  • Bae, J. Y., Lee, D. Y., Choi, I. W., Lee, J. H., & Kim, J. H. (2019). Examination of commercial biocahrs to compare their endosulfan adsorption properties. The Korean Journal of Pesticide Science, 23(3), 172–176.

    Article  Google Scholar 

  • Brinati, A., Oliveira, J. M., Oliveiria, V. S., Barros, M. S., Carvalho, B. M., Oliveiria, L. S., et al. (2016). Low, chronic exposure to endosulfan induces bioaccumulation and decreased carcass total fatty acids in neotropical fruit bats. Bulletin of Environmental Contamination and Toxicology, 97(5), 626–631.

    Article  CAS  Google Scholar 

  • Bruce-Vanderpuije, P., Megson, D., Ryu, S. H., Choi, G. H., Park, S. H., Kim, B. S., et al. (2021). A comparison of the effectiveness of QuEChERS, FaPEx and a modified QuEChERS method on the determination of organochlorine pesticides in ginseng. PLoS ONE, 16, e0246108.

    Article  CAS  Google Scholar 

  • Chalise, D., Kumar, L., Sharma, R., & Kristiansen, P. (2020). Assessing the impacts of tillage and mulch on soil erosion and corn yield. Agronomy, 10, 63.

    Article  Google Scholar 

  • Choi, G. H., Jeong, D. K., Lim, S. J., Ro, J. H., Ryu, S. H., Park, B. J., et al. (2017). Plant uptake potential of endosulfan from soil by carrot and spinach. Journal of Applied Biological Chemistry, 60(4), 339–342.

    Article  Google Scholar 

  • Choi, G. H., Lee, D. Y., Bruce-Vanderpuije, P., Song, A. R., Lee, H. S., Park, S. W., et al. (2021). Environmental and dietary exposure of perfluorooctanoic acid and perfluorooctanesulfonic acid in the Nakdong River, Korea. Environmental Geochemistry and Health, 43, 347–360.

    Article  CAS  Google Scholar 

  • Choi, G. H., Lee, D. Y., Ryu, S. H., Park, B. J., Moon, B. C., & Kim, J. H. (2018a). Investigation of the bioconcentration factor of endosulfan for rice from soil. The Korean Journal of Pesticide Science, 22(1), 25–28. https://doi.org/10.7585/kjps.2018.22.1.25

    Article  Google Scholar 

  • Choi, G. H., Lee, D. Y., Seo, D. C., Kim, L. S., Lim, S. J., Ryu, S. H., et al. (2018b). Endosulfan plant uptake suppression effect on char amendment in oriental radish. Water, Air, and Soil Polltion, 229, 24.

    Article  Google Scholar 

  • Choi, Y. E., Kim, Y. S., Yi, M. J., Park, W. G., Yi, J. S., Chun, S. R., et al. (2007). Physiological and chemical characteristics of field-and mountain-cultivated ginseng roots. Journal Plant Biology, 50, 198–205.

    Article  CAS  Google Scholar 

  • DeLorenzo, M. E., Taylor, L. A., Lund, S. A., Pennington, P. L., Strozier, E. D., & Fulton, M. H. (2002). Toxicity and bioconcentration potenial of the agricultural pesticide endousulfan in phytoplankton and zooplankton. Archives of Environmental Contamination and Toxicology, 42, 173–181.

    Article  CAS  Google Scholar 

  • Fang, Y., Nie, Z., Yang, J., Die, Q., Tian, Y., Liu, F., et al. (2018). Spatial distribution of and seasonal variations in endosulfan concentrations in soil, air, and biota around a contaminated site. Ecotoxicology and Environmental Safety, 161, 402–480.

    Article  CAS  Google Scholar 

  • Ghadiri, H., & Rose, C. W. (2001). Degradation of endo sulfan in a clay soil from cotton farms of western Queensland. Journal of Environmental Management, 62, 155–169.

    Article  CAS  Google Scholar 

  • Gonzalez, M., Miglioranza, K. S. B., Aizpun, J. E., Isla, F. I., & Pena, A. (2010). Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere, 81, 351–358.

    Article  CAS  Google Scholar 

  • Grondona, S. I., Gonzalez, M., Martinez, D. E., Massone, H. E., & Miglioranza, K. S. B. (2014). Endosulfan leaching from typic argiudolls in soybean tillage areas and groundwater pollution implications. Science of the Total Environment, 484, 146–153.

    Article  CAS  Google Scholar 

  • Huang, B., Li, Z., Huang, J., Chen, G., Nie, X., Ma, W., Yao, H., et al. (2015). Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil. Environmental Science and Pollution Research, 22, 11467–11477.

    Article  CAS  Google Scholar 

  • Hwang, J. I., Kwak, S. Y., Lee, S. H., Kang, M. S., Ryu, J. S., Kang, J. G., et al. (2016). Estabilishemn of safe management guideline based on uptake pattern of pesticide residue from soil by radish. Korean Journal Environmental Agriculture, 35(4), 278–285.

    Article  Google Scholar 

  • Hwang, J. I., Lee, S. E., & Kim, J. E. (2015). Plant uptake and distribution of endosulfan and its sulfate metabolite persisted in soil. PLoS ONE, 10, e0141728.

    Article  Google Scholar 

  • Hwang, J. I., Wilson, P. C., & Kim, J. E. (2020). Accumulation characteristics of endosulfan soil residues in soybean and reduction in their phytoavailability by treatment with powdered activated carbon. Environmental Science and Pollution Research, 27, 21260–21272.

    Article  CAS  Google Scholar 

  • Hwang, J. I., Zimmerman, A. R., & Kim, J. E. (2018). Bioconcentration factor-based management of soil pesticide residues: Endosulfan uptake by carrot and potato plants. Science of the Total Environment, 627, 514–522.

    Article  CAS  Google Scholar 

  • Jin, H. O., Kim, U. J., & Yang, D. C. (2009). Effect of nutritional environment in ginseng field on the plant growth of ginseng (Panax ginseng C.A. Meyer). Journal of Ginseng Research, 33(3), 234–239.

    Article  CAS  Google Scholar 

  • Kapsi, M., Tsoutsi, C., Paschalidou, A., & Albanis, T. (2019). Environmental monitoring and risk assessment of pesticide residues in surface waters of the Louros River (NW Greece). Science of the Total Environment, 650, 2188–2198.

    Article  CAS  Google Scholar 

  • Khan, S., Waqas, M., Ding, F. H., Shamshad, I., Arp, H. P. H., & Li, G. (2015). The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). Journal of Hazardous Materials, 300, 243–253.

    Article  CAS  Google Scholar 

  • Kim, J. Y., Saravanan, M., Palansooriya, K. N., & Hur, J. H. (2018). Translocation of endosulfan from soil to ginseng (Panax ginseng C.A. Meyer). Agriculture, 8(4), 52.

    Article  Google Scholar 

  • Kim, J. G., Yoo, J. M., Kim, J. S., Kim, S. G., Park, J. E., Seok, Y. M., et al. (2020). Anticancer effect of mountain ginseng on human breast cancer: comparison with farm-cultivated ginseng. Evidence-Based Complementary and Alternative Medicine, 2020, 2584783.

    Article  Google Scholar 

  • Kroulikova, S., Mohnke, S., Wenzel, W. W., Tejnecky, V., Szakova, J., Mercl, F., et al. (2019). Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil. Environmental Science and Pollution Research, 26, 20866–20878.

    Article  CAS  Google Scholar 

  • Lee, D. Y., Choi, G. H., Megson, D., Oh, K. Y., Choi, I. W., Seo, D. C., et al. (2021). Effect of soil organic matter on the plant uptake of perfluorooctanoic acid (PFOA) and perfluorooctanesulphonic acid (PFOS) in lettuce on granular activated carbon-applied soil. Environmental Geochemistry and Health, 43, 2193–2202.

    Article  CAS  Google Scholar 

  • Lubick, N. (2010). Environment endosulfan’s exit: U.S. EPA pesticide review leads to a ban. Science, 328, 1466–1466.

    Article  CAS  Google Scholar 

  • Mishra, P. C., & Patel, R. K. (2008). Removal of endosulfan by sal wood charcoal. Journal of Hazardous Materials, 152, 730–736.

    Article  CAS  Google Scholar 

  • Mitton, F. M., Gonzalez, M., Monserrat, J. M., & Miglioranza, K. S. B. (2016). Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere, 148, 300–306.

    Article  CAS  Google Scholar 

  • Mukherjee, I. (2012). Influence of organic amendments on the degradation of endosulfan. Bulletin of Environmental Contamination and Toxicology, 89, 334–339.

    Article  CAS  Google Scholar 

  • Mwango, S. B., Msanya, B. M., Mtakwa, P. W., Kimaro, D. N., Deckers, J., & Poesen, J. (2016). Effectiveness of mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the Usambara Mountains Tanzania. Land Degradation and Development, 27(4), 1266–1275.

    Article  Google Scholar 

  • Negro, C. L., Senkman, L. E., Vierling, J., Repetti, M. R., Garcia, S. R., & Collins, P. (2012). Bioaccumulation in freshwater crabs. Endosulfan accumulation in different tissues of zilchiopsis collastinensis P. (Decapoda: Trichodactylidae). Bulletin of Environmental Contamination and Toxicology, 89, 1000–1003.

    Article  CAS  Google Scholar 

  • Ntow, W. J., Ameyibor, J., Kelderman, P., Drechsel, P., & Gijzen, H. J. (2007). Dissipation of endosulfan in field-grown tomato (Lycopersicon esculentum) and cropped soil at Akumadan, Ghana. Journal of Agricultural and Food Chemistry, 55, 10864–10871.

    Article  CAS  Google Scholar 

  • Oh, J. Y., Kim, Y. J., Jang, M. G., Joo, S. C., Kwon, W. S., Kim, S. Y., et al. (2014). Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. Journal of Ginseng Research, 38(4), 270–277.

    Article  Google Scholar 

  • Oh, K. Y., Choi, G. H., Bae, J. H., Lee, D. Y., Lee, S. W., & Kim, J. H. (2020). Effect of soil organic matter content on plant uptake factor of ginseng for endosulfan. Journal of Applied Biological Chemistry, 63(4), 401–406.

    Article  Google Scholar 

  • Pan, J., Zheng, W., Pang, X., Zhang, J., Chen, X., Yuan, M., et al. (2021). Comprehensive investigation on ginsenosides in different parts of a garden-cultivated ginseng root and rhizome. Molecules, 26(6), 1696.

    Article  CAS  Google Scholar 

  • Parsottambhai, S. M. K., & Rawat, M. (2020). Effect of mulching on growth, yield and quality of onion (Allium cepa L.): A review. Journal of Pharmacognosy and Phytochemistry, 9(6), 1861–1863.

    CAS  Google Scholar 

  • Ponnam, V., Katari, N. K., Mandapati, R. N., Nannapaneni, S., Tondepu, S., & Jonnalagadda, S. B. (2020). Efficacy of biochar in removal of organic pesticide, Bentazone from watershed systems. Journal of Environmental Science and Health, Part B, 55(4), 396–405.

    Article  CAS  Google Scholar 

  • Qian, S., Zhu, H., Xiong, B., Zheng, G., Zhang, J., & Xu, W. (2017). Adsorption and desorption characteristics of endosulfan in two typical agricultural soils in Southwest China. Environmental Science and Pollution Research, 24(12), 11493–11503.

    Article  CAS  Google Scholar 

  • Sathishkumar, P., Mohan, K., Ganesan, A. R., Govarthanan, M., Yusoff, A. R. M., & Gu, F. L. (2021). Persistence, toxicological effect and ecological issues of endosulfan – A review. Journal of Hazardous Materials, 416, 125779.

    Article  CAS  Google Scholar 

  • Shivaramaiah, H. M., Sanchez-Bayo, F., Al-Rifai, J., & Kennedy, I. R. (2005). The fate of endosulfan in water. Journal of Environmental Science and Health, Part B, 40(5), 711–720.

    Article  CAS  Google Scholar 

  • Singh, R. P., & Singh, S. (2008). Adsorption and movement of endosulfan in soils: A verification of th co-solvent theory and a comparison of batch equilibrium and soil thin layer chromatography results. Adsorption Science and Technology, 26(3), 185–199.

    Article  CAS  Google Scholar 

  • Song, Y. N., Hong, H. G., Son, J. S., Kwon, Y. O., Lee, H. H., Kim, J. H., et al. (2019). Investigation of ginsenosides and antioxidant activities in the roots, leaves, and stems of ydroponic-cultured ginseng (Panax ginseng Meyer). Preventive Nutrition and Food Science, 24(3), 283–292.

    Article  CAS  Google Scholar 

  • Sun, Y., Chang, X. P., Zhao, L. X., Zhou, B., Weng, L. P., & Li, Y. T. (2020). Comparative study on the pollution status of organochlorine pesticides (OCPs) and bacterial community diversity and structure between plastic shed and open-field soils from northern China. Science of the Total Environment, 741, 139620.

    Article  CAS  Google Scholar 

  • Tariq, M. Y., Afzal, S., & Hussain, I. (2006). Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan. Environmental Research, 100, 184–196.

    Article  CAS  Google Scholar 

  • Toledo, M. C. F., & Jonsson, C. M. (1992). Bioaccumulation and elimination of endosulfan in zebra fish (Brachydanio rerio). Pest Management Science, 36, 207–211.

    Article  CAS  Google Scholar 

  • Vaikosen, E. N., Olu-Owolabi, B. I., Gibson, L. T., Adebowale, K. O., Davidson, C. M., & Asogwa, U. (2019). Kinetic field dissipation and fate of endosulfan after application on Theobroma cacao farm in tropical Southwestern Nigeria. Environmental Monitoring and Assessment, 191, 196.

    Article  Google Scholar 

  • Weber, J., Halsall, C. J., Muir, D., Teixeira, C., Small, J., Solomon, K., et al. (2010). Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Science of the Total Environment, 408, 2966–2984.

    Article  CAS  Google Scholar 

  • Zhang, N., Yang, Y., Tao, S., Liu, Y., & Shi, K. L. (2011). Sequestration of organochlorine pesticides in soils of distinct organic carbon content. Environmental Pollution, 159, 700–705.

    Article  CAS  Google Scholar 

  • Zhao, Z. H., Zeng, H. A., Wu, J. L., & Zhang, L. (2013). Organochlorine pesticide (OCP) residues in mountain soils from Tajikistan. Environmetal Science Process and Impacts, 15, 608–616.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from "Research Program for Agricultural Science & Technology Development", National Academy of Agricultural Science, Rural Development Administration (PJ01381603), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Lee DY and Bae JY performed the field experiment, adsorption experiment and the quantitative analysis; Oh KY, Lee SW, Bae YS, Kim SK, Song AR, Moon BY and Choi GH performed the field experiments; Megson D and Choi GH discussed the results; Kim JH designed and supervised all the experiments and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jin-Hyo Kim.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

This is an observational study. Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 517 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DY., Choi, GH., Bae, YS. et al. Fate of endosulfan in ginseng farm and effect of granular biochar treatment on endosulfan accumulation in ginseng. Environ Geochem Health 44, 3953–3965 (2022). https://doi.org/10.1007/s10653-021-01152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01152-1

Keywords

Navigation