Skip to main content
Log in

Seasonality, atmospheric transport and inhalation risk assessment of polycyclic aromatic hydrocarbons in PM2.5 and PM10 from industrial belts of Odisha, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study is the first attempt to assess the presence of 16 priority polycyclic aromatic hydrocarbons (PAHs) enlisted by the US Environmental Protection Agency in PM2.5 and PM10 from industrial areas of Odisha State, India. During 2017–2018, bimonthly sampling of PM10 and PM2.5 was carried out for 24 h in the industrial and mining areas of Jharsuguda and Angul in Odisha during the pre-monsoon, monsoon, and post monsoon seasons. Highest mean concentration of ∑16PAHs in PM2.5 was observed during the post monsoon (170 ng/m3) period followed by pre-monsoon (48 ng/m3) and monsoon (16 ng/m 3) periods, respectively. A similar trend of ∑16PAHs was also observed in PM10 with higher levels observed during post monsoon (286 ng/m3) followed by pre-monsoon (81 ng/m3) and monsoon (27 ng/m3) seasons. Diagnostic ratios and principal component analysis suggested diesel, gasoline and coal combustion as the major contributors of atmospheric PAH pollution in Odisha. Back trajectory analysis revealed that PAH concentration was affected majorly by air masses originating from the northwest direction traversing through central India. Toxic equivalents ranged between 0.24 and 94.13 ng TEQ/m3. In our study, the incremental lifetime cancer risk ranged between 10–5 and 10–3, representing potential cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163, 1033–1039.

    Article  CAS  Google Scholar 

  • Airveda, (2017). What Is PM2.5 and Why is it important? Available at https://www.airveda.com/blog/what-is-pm2-5-and-why-is-it-important.

  • Akyüz, M., & Çabuk, H. (2009). Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak Turkey. Journal of Hazardous Materials, 170, 13–21.

    Article  Google Scholar 

  • Alves, C. A., Vicente, A. M., Custódio, D., Cerqueira, M., Nunes, T., Pio, C., Lucarelli, F., Calzolai, G., Nava, S., & Diapouli, E. (2017). Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Science of the Total Environment, 595, 494–504.

    Article  CAS  Google Scholar 

  • Bandowe, B. A. M., Meusel, H., Huang, R.-J., Ho, K., Cao, J., Hoffmann, T., & Wilcke, W. (2014). PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Science of the Total Environment, 473, 77–87.

    Article  Google Scholar 

  • Barrado, A. I., García, S., Castrillejo, Y., & Barrado, E. (2013). Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles. Correlations with physical and chemical factors. Atmospheric Environment, 67, 385–393.

    Article  CAS  Google Scholar 

  • Belis, C. A., Cancelinha, J., Duane, M., Forcina, V., Pedroni, V., Passarella, R., Tanet, G., Douglas, K., Piazzalunga, A., Bolzacchini, E., Sangiorgi, G., Perrone, M. G., Ferrero, L., Fermo, P., & Larsen, B. R. (2011). Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene. Atmospheric Environment, 45, 7266–7275.

    Article  CAS  Google Scholar 

  • Bourotte, C., Forti, M.-C., Taniguchi, S., Bícego, M. C., & Lotufo, P. A. (2005). A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmospheric Environment, 39, 3799–3811.

    Article  CAS  Google Scholar 

  • Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmospheric Environment, 33, 3731–3738.

    Article  CAS  Google Scholar 

  • Carreras, H. A., Calderón-Segura, M. E., Gómez-Arroyo, S., Murillo-Tovar, M. A., & Amador-Muñoz, O. (2013). Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina. Environmental Pollution, 178, 403–410.

    Article  CAS  Google Scholar 

  • Chen, C.-W., & Chen, C.-F. (2011). Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor Taiwan. Marine Pollution Bulletin, 63, 417–423.

    Article  CAS  Google Scholar 

  • Chen, S.-J., Su, H.-B., Chang, J.-E., Lee, W.-J., Huang, K.-L., Hsieh, L.-T., Huang, Y.-C., Lin, W.-Y., & Lin, C.-C. (2007). Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmospheric Environment, 41, 1209–1220.

    Article  CAS  Google Scholar 

  • Cheng, H., Deng, Z., Chakraborty, P., Liu, D., Zhang, R., Xu, Y., Luo, C., Zhang, G., & Li, J. (2013). A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers. Atmospheric Environment, 73, 16–21.

    Article  CAS  Google Scholar 

  • Christensen, E. R., & Bzdusek, P. A. (2005). PAHs in sediments of the Black River and the Ashtabula River, Ohio: Source apportionment by factor analysis. Water Research, 39, 511–524.

    Article  CAS  Google Scholar 

  • Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A., & Lepri, L. (2007). Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere, 68, 472–478.

    Article  CAS  Google Scholar 

  • del Rosario Sienra, M., Rosazza, N. G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75, 267–281.

    Article  Google Scholar 

  • Draxler, R. R., Stunder, B., Rolph, G., & Taylor, A. (1999). HYSPLIT4 user’s guide, US Department of Commerce, National Oceanic and Atmospheric Administration. Environmental Research Laboratories, Air Resources Laboratory

  • Eeftens, M., Tsai, M.-Y., Ampe, C., Anwander, B., Beelen, R., Bellander, T., Cesaroni, G., Cirach, M., Cyrys, J., & de Hoogh, K. (2012). Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2–results of the ESCAPE project. Atmospheric Environment, 62, 303–317.

    Article  CAS  Google Scholar 

  • EPA. (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons (PAH).

  • Feng, J., Chan, C. K., Fang, M., Hu, M., He, L., & Tang, X. (2005). Impact of meteorology and energy structure on solvent extractable organic compounds of PM2. 5 in Beijing China. Chemosphere, 61, 623–632.

    Article  CAS  Google Scholar 

  • Gogou, A., Stratigakis, N., Kanakidou, M., & Stephanou, E. G. (1996). Organic aerosols in Eastern Mediterranean: Components source reconciliation by using molecular markers and atmospheric back trajectories. Organic Geochemistry, 25, 79–96.

    Article  CAS  Google Scholar 

  • Hegarty, J., Draxler, R. R., Stein, A. F., Brioude, J., Mountain, M., Eluszkiewicz, J., Nehrkorn, T., Ngan, F., & Andrews, A. (2013). Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases. Journal of Applied Meteorology and Climatology, 52, 2623–2637.

    Article  Google Scholar 

  • Hong, H., Yin, H., Wang, X., & Ye, C. (2007). Seasonal variation of PM10-bound PAHs in the atmosphere of Xiamen, China. Atmospheric Research, 85, 429–441.

    Article  CAS  Google Scholar 

  • Jamhari, A. A., Sahani, M., Latif, M. T., Chan, K. M., Tan, H. S., Khan, M. F., & Tahir, N. M. (2014). Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment, 86, 16–27.

    Article  CAS  Google Scholar 

  • Karar, K., & Gupta, A. (2006). Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmospheric Research, 81, 36–53.

    Article  CAS  Google Scholar 

  • Kaur, S., Senthilkumar, K., Verma, V., Kumar, B., Kumar, S., Katnoria, J. K., & Sharma, C. (2013). Preliminary analysis of polycyclic aromatic hydrocarbons in air particles (PM10) in Amritsar, India: Sources, apportionment, and possible risk implications to humans. Archives of Environmental Contamination and Toxicology, 65, 382–395.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Lawrence, J., Koutrakis, P., Stephanou, E. G., & Oyola, P. (1999). Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: Source reconciliation and evaluation of sampling artifacts. Atmospheric Environment, 33, 4977–4986.

    Article  CAS  Google Scholar 

  • Kulkarni, K., Sahu, S., Vaikunta, R., Pandit, G., & Lakshmana, D. (2014). Characterization and source identification of atmospheric polycyclic aromatic hydrocarbons in Visakhapatnam India. International Research Journal of Environmental Science, 3, 57–64.

    CAS  Google Scholar 

  • Li, P., Xue, R., Wang, Y., Zhang, R., & Zhang, G. (2015). Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: Distribution, sources, inventory and probability risk. Marine Pollution Bulletin, 90, 218–226.

    Article  CAS  Google Scholar 

  • Li, Z., Sjodin, A., Porter, E. N., Patterson, D. G., Needham, L. L., Lee, S., Russell, A. G., & Mulholland, J. A. (2009). Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlanta. Atmospheric Environment, 43, 1043–1050.

    Article  CAS  Google Scholar 

  • Lodovici, M., Venturini, M., Marini, E., Grechi, D., & Dolara, P. (2003). Polycyclic aromatic hydrocarbons air levels in Florence, Italy, and their correlation with other air pollutants. Chemosphere, 50, 377–382.

    Article  CAS  Google Scholar 

  • Marr, L. C., Kirchstetter, T. W., Harley, R. A., Miguel, A. H., Hering, S. V., & Hammond, S. K. (1999). Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science & Technology, 33, 3091–3099.

    Article  CAS  Google Scholar 

  • Masih, A., Saini, R., Singhvi, R., & Taneja, A. (2010). Concentrations, sources, and exposure profiles of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM 10) in the north central part of India. Environmental Monitoring and Assessment, 163, 421–431.

    Article  CAS  Google Scholar 

  • Maurer, C., Baré, J., Kusmierczyk-Michulec, J., Crawford, A., Eslinger, P. W., Seibert, P., Orr, B., Philipp, A., Ross, O., & Generoso, S. (2018). International challenge to model the long-range transport of radioxenon released from medical isotope production to six Comprehensive Nuclear-Test-Ban Treaty monitoring stations. Journal of Environmental Radioactivity, 192, 667–686.

    Article  CAS  Google Scholar 

  • McGrath, T. E., Wooten, J. B., Geoffrey Chan, W., & Hajaligol, M. R. (2007). Formation of polycyclic aromatic hydrocarbons from tobacco: The link between low temperature residual solid (char) and PAH formation. Food and Chemical Toxicology, 45, 1039–1050.

    Article  CAS  Google Scholar 

  • Mohanraj, R., Solaraj, G., & Dhanakumar, S. (2011). PM 2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India. Bulletin of Environmental Contamination and Toxicology, 87, 330–335.

    Article  CAS  Google Scholar 

  • Moon, H.-B., Kannan, K., Lee, S.-J., & Ok, G. (2006). Atmospheric deposition of polycyclic aromatic hydrocarbons in an urban and a suburban area of Korea from 2002 to 2004. Archives of Environmental Contamination and Toxicology, 51, 494–502.

    Article  CAS  Google Scholar 

  • Morakinyo, O. M., Mukhola, M. S., & Mokgobu, M. I. (2019a). Concentration levels and carcinogenic and mutagenic risks of PM 2.5-bound polycyclic aromatic hydrocarbons in an urban-industrial area in South Africa. Environmental Geochemistry and Health, 2020, 1–16.

    Google Scholar 

  • Morakinyo, O. M., Mukhola, M. S., & Mokgobu, M. I. (2019b). Concentration levels and carcinogenic and mutagenic risks of PM(2.5)-bound polycyclic aromatic hydrocarbons in an urban-industrial area in South Africa. Environmental Geochemistry and Health, 42(7), 2163–2178.

    Article  Google Scholar 

  • Nasher, E., Heng, L. Y., Zakaria, Z., & Surif, S. (2013). Assessing the ecological risk of polycyclic aromatic hydrocarbons in sediments at Langkawi Island, Malaysia. The Scientific World Journal, 2013, 1–13.

    Article  Google Scholar 

  • Odabasi, M., Vardar, N., Sofuoglu, A., Tasdemir, Y., & Holsen, T. M. (1999). Polycyclic aromatic hydrocarbons (PAHs) in Chicago air. Science of the Total Environment, 227, 57–67.

    Article  CAS  Google Scholar 

  • Omar, N. Y. M., Abas, M. R. B., Ketuly, K. A., & Tahir, N. M. (2002). Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment, 36, 247–254.

    Article  CAS  Google Scholar 

  • Peters, C. A., Knightes, C. D., & Brown, D. G. (1999). Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environmental Science & Technology, 33, 4499–4507.

    Article  CAS  Google Scholar 

  • Ping, L. F., Luo, Y. M., Zhang, H. B., Li, Q. B., & Wu, L. H. (2007). Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environmental Pollution, 147, 358–365.

    Article  CAS  Google Scholar 

  • Pio, C., Alves, C., & Duarte, A. (2001). Organic components of aerosols in a forested area of central Greece. Atmospheric Environment, 35, 389–401.

    Article  CAS  Google Scholar 

  • Possanzini, M., Di Palo, V., Gigliucci, P., Scianò, M. C. T., & Cecinato, A. (2004). Determination of phase-distributed PAH in Rome ambient air by denuder/GC-MS method. Atmospheric Environment, 38, 1727–1734.

    Article  CAS  Google Scholar 

  • Ravindra, K., Wauters, E., & Van Grieken, R. (2008). Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Science of the Total Environment, 396, 100–110.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science & Technology, 27, 636–651.

    Article  CAS  Google Scholar 

  • Sarkar, S., & Khillare, P. (2013). Profile of PAHs in the inhalable particulate fraction: Source apportionment and associated health risks in a tropical megacity. Environmental Monitoring and Assessment, 185, 1199–1213.

    Article  CAS  Google Scholar 

  • Singh, D. K., Sharma, S., Habib, G., & Gupta, T. (2015). Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles. Environmental Science and Pollution Research, 22, 12458–12468.

    Article  CAS  Google Scholar 

  • Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96, 2059–2077.

    Article  Google Scholar 

  • Tan, J., Guo, S., Ma, Y., Duan, J., Cheng, Y., He, K., & Yang, F. (2011). Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmospheric Research, 10, 91–98.

    Article  Google Scholar 

  • Tavakoly Sany, S., Hashim, R., Salleh, A., Rezayi, M., Mehdinia, A., & Safari, O. (2014). Polycyclic aromatic hydrocarbons in coastal sediment of Klang Strait, Malaysia: distribution pattern, risk assessment and sources. PLoS ONE, 9(8), e94907.

    Article  Google Scholar 

  • Valavanidis, A., Fiotakis, K., Vlahogianni, T., Bakeas, E. B., Triantafillaki, S., Paraskevopoulou, V., & Dassenakis, M. (2006). Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece). Chemosphere, 65, 760–768.

    Article  CAS  Google Scholar 

  • Vasconcellos, P. C., Zacarias, D., Pires, M. A. F., Pool, C. S., & Carvalho, L. R. F. (2003). Measurements of polycyclic aromatic hydrocarbons in airborne particles from the metropolitan area of São Paulo City, Brazil. Atmospheric Environment, 37, 3009–3018.

    Article  CAS  Google Scholar 

  • Wang, G., Kawamura, K., Zhao, X., Li, Q., Dai, Z., & Niu, H. (2007). Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmospheric Environment, 41, 407–416.

    Article  CAS  Google Scholar 

  • Wang, J., Geng, N. B., Xu, Y. F., Zhang, W. D., Tang, X. Y., & Zhang, R. Q. (2014). PAHs in PM 2.5 in Zhengzhou: Concentration, carcinogenic risk analysis, and source apportionment. Environmental Monitoring and Assessment, 186, 7461–7473.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M.-J., Kang, Y., Wang, H.-S., Leung, A. O., Cheung, K. C., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.

    Article  CAS  Google Scholar 

  • Wang, X., Cheng, H., Xu, X., Zhuang, G., & Zhao, C. (2008). A wintertime study of polycyclic aromatic hydrocarbons in PM2. 5 and PM2. 5–10 in Beijing: Assessment of energy structure conversion. Journal of Hazardous Materials, 157, 47–56.

    Article  CAS  Google Scholar 

  • Wang, X. Y., Li, Q. B., Luo, Y. M., Ding, Q., Xi, L. M., Ma, J. M., Li, Y., Liu, Y. P., & Cheng, C. L. (2010). Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. Environmental Monitoring and Assessment, 165, 295–305.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G., & Zhang, G. L. (2006). Distributions and Concentrations of PAHs in Hong Kong Soils. Environmental Pollution, 141, 107–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. B.N. Bhol, Ex-Chief Scientist, Odisha State Pollution Control Board (OSPCB), Bhubaneswar and Head, P.G. Department of Environmental Sciences, Sambalpur University, Odisha for their continuous support during the study period. Thanks to JSAs and Field Assistants of OSPCB who helped during the air sampling in Angul and Jharsuguda. The authors are grateful to Scientific Research Laboratory, Kolkata for the immense support.

Author information

Authors and Affiliations

Authors

Contributions

SE Sampling, analysis, data compilation and manuscript writing, SKS Data interpretation, graphics and manuscript writing, overall planning and guidance, Sanjeev Dwivedi: HYSPILT Modelling, SNK Data interpretation and editing, SD Experimental analysis and editing, OG Manuscript review and editing, PC Data and manuscript review and editing, overall planning and guidance.

Corresponding author

Correspondence to Paromita Chakraborty.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekka, S., Sahu, S.K., Dwivedi, S. et al. Seasonality, atmospheric transport and inhalation risk assessment of polycyclic aromatic hydrocarbons in PM2.5 and PM10 from industrial belts of Odisha, India. Environ Geochem Health 44, 3991–4005 (2022). https://doi.org/10.1007/s10653-021-01128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01128-1

Keywords

Navigation