Skip to main content
Log in

Atmospheric PAHs in rural, urban, industrial and beach locations in Buenos Aires Province, Argentina: sources and health risk assessment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The first atmospheric PAHs levels and associated inhalation cancer risk were assessed over southwest Buenos Aires region by deploying PUF disk PAS samplers. Eight sampling location included coastal zones, touristic beaches, and rural inland areas were considered. PUF disks were fortified with surrogate standards and extracted by automated Soxhlet prior to GC–MS analysis. Σ16 PAHs ranged from 1.13 to 44.5 ng m−3 (10.3 ± 9.8), while urban locations showed up to 10 times higher PAH levels than rural or beach locations. Direct sources of PAHs, such as intensive vehicle traffic, heating, and general combustion activities, were identified. PAHs with four to six rings (46.62%) were predominantly Flt, Pyr, BbF, and BkF, and carcinogenic risk was expressed by BaP (0.10 ± 0.07 ng m−3) and BaPTEQs (0.26 ± 0.22 ng m−3). Inhalation ECR (2.23E-5, WHO) presented the lowest risk at beach locations. Molecular ratios and PCA showed a strong dominance in pyrolytic sources, such as biomass and coal combustion, with a particular signature in fires at inland locations. Overall, this study demonstrated that PUF disk passive air sampling provided a sound and simple approach for tracking air PAHs, their sources and public health risks, bringing a cost-effective tool for pollution control measures, even at small and remote towns. This is particularly relevant in extensive countries with medium or low income, such as Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source apportionment along the area of study. Abbreviations refer to the ratios of fluoranthene (Flu) to fluoranthene plus pyrene (Flu/202), indeno-[1,2,3-cd]pyrene (IcdP) to IcdP plus benzo[ghi]perylene (IcdP/276), Benz-a-anthracene (BaA) to BaA plus Chrysene (BaA/276) and anthracene (Ant) to Ant plus phenanthrene (Ant/178). I: Petrogenic origin, II: Combustion: Fuel derivatives + biomass, III: Biomass combustion, IV: Mix, V: Combustion/Pyrolytic sources. Flu/202 range references are: aWesterholm and Li (1994). bWang et al. (1999) cSchauer et al. (1999) dWesterholm et al. (2001) eGrimmer et al. (1983) fBenner et al. (1990) gLi and Kamens (1993) hRogge et al. (1993) iLaflamme and Hites (1978) jSjogren et al. (1996) kFreeman and Cattell (1990) lJenkins et al. (1996) mOanh et al. (1999) nSchauer et al. (2001) oFine et al. (2001)

Fig. 5

Similar content being viewed by others

References

  • Abdel-shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Akyüz, M., & Çabuk, H. (2010). Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak Turkey. Science of the Total Environment, 408(22), 5550–5558. https://doi.org/10.1016/j.scitotenv.2010.07.063

    Article  CAS  Google Scholar 

  • Ali-taleshi, M. S., Moeinaddini, M., & Riyahi, A. (2020). A one-year monitoring of spatiotemporal variations of PM 2.5 -bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-speci fi c cancer risk assessment*. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.115883

    Article  Google Scholar 

  • Anh, H. Q., Watanabe, I., Tue, N. M., Tuyen, L. H., Viet, P. H., Chi, N. K., Minh, T. B., & Takahashi, S. (2020). Polyurethane foam-based passive air sampling for simultaneous determination of POP- and PAH-related compounds: A case study in informal waste processing and urban areas, northern Vietnam. Chemosphere, 247,. https://doi.org/10.1016/j.chemosphere.2020.125991

    Article  Google Scholar 

  • Ares, J., & Zavatti, J. (1993a). Comparative analysis of emissions and diffusion of air PAHs at a coastal arid site (Patagonia, Argentina). Bulletin of Environmental Contamination and Toxicology, 50(3), 333–339. https://doi.org/10.1007/BF00197191

    Article  CAS  Google Scholar 

  • Arias, A. H., Marcovecchio, J. E., Freije, R. H., Ponce-Velez, G., & Botello, A. V. (2010a). Sources analysis and equivalent toxicity assessment of PAHs impacted sediments in Bahia Blanca Estuary, Argentina. Hidrobiologica, 20(1).

  • Arias, A. H., Spetter, C. V., Freije, R. H., & Marcovecchio, J. E. (2009). Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca Estuary. Argentina: Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2009.06.008

    Book  Google Scholar 

  • Arias, A. H., Vazquez-Botello, A., Tombesi, N., Ponce-Vélez, G., Freije, H., & Marcovecchio, J. (2010b). Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary. Environmental Monitoring and Assessment Argentina. https://doi.org/10.1007/s10661-008-0696-5

    Article  Google Scholar 

  • Bahía Blanca Port Management Consortium CGPBB. 2017.(CGPBB).https://puertobahiablanca.com/vision_portuaria_2040/files/downloads/Vision_BB_2040.pdf

  • Bandowe, B. A. M., Meusel, H., Huang, R. J., Ho, K., Cao, J., Hoffmann, T., & Wilcke, W. (2014). PM2. 5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Science of the Total Environment, 473, 77–87.

    Article  Google Scholar 

  • Barra, R., Castillo, C., & Torres, J. P. M. (2007). Polycyclic aromatic hydrocarbons in the South American environment. Reviews of Environmental Contamination and Toxicology, 191, 1–22. https://doi.org/10.1007/978-0-387-69163-3_1

    Article  CAS  Google Scholar 

  • Bates, M., Bruno, P., Caputi, M., Caselli, M., de Gennaro, G., & Tutino, M. (2008). Analysis of polycyclic aromatic hydrocarbons (PAHs) in airborne particles by direct sample introduction thermal desorption GC/MS. Atmospheric Environment, 42(24), 6144–6151. https://doi.org/10.1016/j.atmosenv.2008.03.050

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, 47(1), 77–90. https://doi.org/10.1006/ecss.1998.0337

    Article  CAS  Google Scholar 

  • Benner, B. A., Bryner, N. P., Wise, S. A., Mulholland, G. W., Lao, R. C., & Fingas, M. F. (1990). Polycyclic aromatic hydrocarbon emissions from the combustion of crude oil on water. Environmental Science & Technology, 24, 1418–1427.

    Article  CAS  Google Scholar 

  • Bidleman, T. F., Nygren, O., & Tysklind, M. (2016). Field estimates of polyurethane foam - air partition coefficients for hexachlorobenzene, alpha-hexachlorocyclohexane and bromoanisoles. Chemosphere, 159, 126–131. https://doi.org/10.1016/j.chemosphere.2016.05.040

    Article  CAS  Google Scholar 

  • Campo, A. M., Fernández, M. E., & Gentili, J. O. (2017). Variabilidad temporal del PM10 en Bahía Blanca (Argentina) y su relación con variables climáticas. Cuadernos Geográficos, 56(3), 6–25.

    Google Scholar 

  • Catoggio, J. A., Succar, S. D., & Roca, A. E. (1989). Polynuclear aromatic hydrocarbon content of particulate matter suspended in the atmosphere of La Plata, Argentina. Science of the Total Environment, the, 79(1), 43–58. https://doi.org/10.1016/0048-9697(89)90052-1

    Article  CAS  Google Scholar 

  • Cetin, B., Yurdakul, S., Gungormus, E., Ozturk, F., & Sofuoglu, S. C. (2018a). Source apportionment and carcinogenic risk assessment of passive air sampler-derived PAHs and PCBs in a heavily industrialized region. Science of the Total Environment, 633, 30–41. https://doi.org/10.1016/j.scitotenv.2018.03.145

    Article  CAS  Google Scholar 

  • Cheng, H., Deng, Z., Chakraborty, P., Liu, D., Zhang, R., Xu, Y., & Li, J. (2013). A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers. Atmospheric Environment, 73, 16–21.

    Article  CAS  Google Scholar 

  • De La Torre-Roche, R. J., Lee, W. Y., & Campos-Díaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163(2–3), 946–958. https://doi.org/10.1016/j.jhazmat.2008.07.089

    Article  CAS  Google Scholar 

  • Environment Canada. (1998). Ambient air measurements of polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo p-dioxins (PCDD) and polychlorinated dibenzofurans in Canada (1987–1997).

  • Estellano, V. H., Pozo, K., Harner, T., Corsolini, S., & Focardi, S. (2012). Using PUF disk passive samplers to simultaneously measure air concentrations of persistent organic pollutants (POPs) across the Tuscany Region Italy. Atmospheric Pollution Research, 3(1), 88–94.

    Article  CAS  Google Scholar 

  • Estellano, V. H., Pozo, K., Přibylová, P., Klánová, J., Audy, O., & Focardi, S. (2017). Assessment of seasonal variations in persistent organic pollutants across the region of Tuscany using passive air samplers. Environmental Pollution, 222, 609–616. https://doi.org/10.1016/j.envpol.2016.08.092

    Article  CAS  Google Scholar 

  • Fine, P. M., Cass, G. R., & Simoneit, B. R. (2001). Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environmental Science & Technology, 35, 2665–2675.

    Article  CAS  Google Scholar 

  • Freeman, D. J., & Cattell, F. C. (1990). Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environment Science & Technology, 24, 1581–1585.

    Article  CAS  Google Scholar 

  • Gallego, E., Roca, F. J., Perales, J. F., Guardino, X., & Berenguer, M. J. (2008). VOCs and PAHs emissions from creosote-treated wood in a field storage area. Science of the Total Environment, 402(1), 130–138. https://doi.org/10.1016/j.scitotenv.2008.04.008

    Article  CAS  Google Scholar 

  • Golomb, D., Barry, E., Fisher, G., Varanusupakul, P., Koleda, M., & Rooney, T. (2001). Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters. Atmospheric Environment, 35(36), 6245–6258. https://doi.org/10.1016/S1352-2310(01)00456-3

    Article  CAS  Google Scholar 

  • Grimmer, G., Jacob, J., Naujack, K.-W., & Dettbarn, G. (1983). Determination of polycyclic aromatic compounds emitted from brown-coal-fired residential stoves by gas chromatography/ mass spectrometry. Analytical Chemistry, 55, 892–900.

    Article  CAS  Google Scholar 

  • Hafner, W. D., Carlson, D. L., & Hites, R. A. (2005). Influence of local human population on atmospheric polycyclic aromatic hydrocarbon concentrations. Environmental Science and Technology, 39(19), 7374–7379. https://doi.org/10.1021/es0508673

    Article  CAS  Google Scholar 

  • Harner, T., Pozo, K., Gouin, T., Macdonald, A. M., Hung, H., Cainey, J., & Peters, A. (2006a). Global pilot study for persistent organic pollutants (POPs) using PUF disk passive air samplers. Environmental Pollution, 144(2), 445–452. https://doi.org/10.1016/j.envpol.2005.12.053

    Article  CAS  Google Scholar 

  • Harner, T., Shoeib, M., Diamond, M., Ikonomou, M., & Stern, G. (2006b). Passive sampler derived air concentrations of PBDEs along an urban-rural transect: Spatial and temporal trends. Chemosphere, 64(2), 262–267. https://doi.org/10.1016/j.chemosphere.2005.12.018

    Article  CAS  Google Scholar 

  • Harner, T., Su, K., Genualdi, S., Karpowicz, J., Ahrens, L., Mihele, C., Schuster, J., Charland, J. P., & Narayan, J. (2013a). Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmospheric Environment, 75, 123–128. https://doi.org/10.1016/j.atmosenv.2013.04.012

    Article  CAS  Google Scholar 

  • Harner, T., Su, K., Genualdi, S., Karpowicz, J., Ahrens, L., Mihele, C., & Narayan, J. (2013b). Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmospheric Environment, 75, 123–128.

    Article  CAS  Google Scholar 

  • Holt, E., Bohlin-Nizzetto, P., Borůvková, J., Harner, T., Kalina, J., Melymuk, L., & Klánová, J. (2017). Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations. Environmental Pollution, 220, 1100–1111. https://doi.org/10.1016/j.envpol.2016.11.030

    Article  CAS  Google Scholar 

  • Hussar, E., Richards, S., Lin, Z., Dixon, R. P., & Johnson, K. A. (2012). Human health risk assessment of 16 priority polycyclic aromatic hydrocarbons in soils of Chattanooga. Tennessee, USA, 5535–5548,. https://doi.org/10.1007/s11270-012-1265-7

    Article  Google Scholar 

  • Jaward, F. M., Barber, J. L., Booij, K., & Jones, K. C. (2004). Spatial distribution of atmospheric PAHs and PCNs along a north–south Atlantic transect. Environmental Pollution, 132(1), 173–181.

    Article  CAS  Google Scholar 

  • Jenkins, B. M., Jones, A. D., Turn, S. Q., & Williams, R. B. (1996). Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environment Science & Technology, 30, 2462–2469.

    Article  CAS  Google Scholar 

  • Jia, Y., Stone, D., Wang, W., Schrlau, J., Tao, S., & Massey Simonich, S. L. (2011). Estimated reduction in cancer risk due to PAH exposures if source control measures during the 2008 Beijing Olympics were sustained. Environmental Health Perspectives, 119(6), 815–820.

    Article  CAS  Google Scholar 

  • Kanwischer, M., Bunke, D., Leipe, T., Moros, M., & Schulz-bull, D. E. (2020). Polycyclic aromatic hydrocarbons in the Baltic Sea–Pre-industrial and industrial developments as well as current status. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2020.111526

    Article  Google Scholar 

  • Katsoyiannis, A., Terzi, E., & Cai, Q. Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources Is this use appropriate? Chemosphere, 69(8), 1337–1339. https://doi.org/10.1016/j.chemosphere.2007.05.084

    Article  CAS  Google Scholar 

  • Klánová, J., Èupr, P., Kohoutek, J., & Harner, T. (2008). Assessing the influence of meteorological parameters on the performance of polyurethane foam-based passive air samplers. Environmental Science & Technology, 42(2), 550–555.

    Article  Google Scholar 

  • Lammel, G., Klánová, J., Ilić, P., Kohoutek, J., Gasić, B., Kovacić, I., Lakić, N., & Radić, R. (2010). Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - I. Levels and Variabilities. Atmospheric Environment, 44(38), 5015–5021. https://doi.org/10.1016/j.atmosenv.2010.07.034

    Article  CAS  Google Scholar 

  • Laflamme, R. E., & Hites, R. A. (1978). The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochimica et cosmochimica Acta, 42, 289–303.

    Article  CAS  Google Scholar 

  • Li, C. K., & Kamens, R. M. (1993). The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmospheric Environment, 27A, 523–532.

    Article  CAS  Google Scholar 

  • Liu, M., Baugh, P. J., Hutchinson, S. M., Yu, L., & Xu, S. (2000). Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary. China. Environmental Pollution, 110(2), 357–365. https://doi.org/10.1016/S0269-7491(99)00292-4

    Article  CAS  Google Scholar 

  • Ma, W. L., Zhu, F. J., Hu, P. T., Qiao, L. N., & Li, Y. F. (2020). Gas/particle partitioning of PAHs based on equilibrium-state model and steady-state model. Science of the Total Environment, 706,. https://doi.org/10.1016/j.scitotenv.2019.136029

    Article  Google Scholar 

  • Mazquiarán, M. A. B., Ortiz, C., & de Pinedo, L. (2007). Organic composition of atmospheric urban aerosol: Variations and sources of aliphatic and polycyclic aromatic hydrocarbons. Atmospheric Research, 85(3–4), 288–299. https://doi.org/10.1016/j.atmosres.2007.01.004

    Article  CAS  Google Scholar 

  • Motelay-Massei, A., Ollivon, D., Garban, B., Tiphagne-Larcher, K., Zimmerlin, I., & Chevreuil, M. (2007). PAHs in the bulk atmospheric deposition of the Seine river basin: Source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere, 67(2), 312–321. https://doi.org/10.1016/j.chemosphere.2006.09.074

    Article  CAS  Google Scholar 

  • Nemr, A. E., Khaled, A., El-Sikaily, A., Said, T. O., & Abd-Allah, A. M. A. (2005). Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the Suez Gulf. Environmental Monitoring and Assessment, 111(1–3), 333–358. https://doi.org/10.1007/s10661-005-9009-4

    Article  Google Scholar 

  • Nisbet, I. C., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.

    Article  CAS  Google Scholar 

  • Oanh, N. T. K., Reutergardh, L. B., & Dung, N. T. (1999). Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environment Science & Technology, 33, 2703–2709.

    Article  CAS  Google Scholar 

  • OEHHA. (1994). Benzo[a]pyrene as a toxic air contaminant. Berkeley, California, USA. California Environmental Protection Agency.

  • Oliva, A. L., La Colla, N. S., Arias, A. H., Blasina, G. E., Lopez Cazorla, A., & Marcovecchio, J. E. (2017). Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9394-6

    Article  Google Scholar 

  • Oliva, A. L., Quintas, P. Y., La Colla, N. S., Arias, A. H., & Marcovecchio, J. E. (2015). Distribution, sources, and potential ecotoxicological risk of polycyclic aromatic hydrocarbons in surface sediments from Bahía Blanca Estuary. Archives of Environmental Contamination and Toxicology Argentina. https://doi.org/10.1007/s00244-015-0169-0

    Article  Google Scholar 

  • Orazi, M. M., Arias, A. H., Oliva, A. L., Ronda, A. C., & Marcovecchio, J. E. (2020). Characterization of atmospheric and soil polycyclic aromatic hydrocarbons and evaluation of air-soil relationship in the Southwest of Buenos Aires province Argentina. Chemosphere, 240, 124847.

    Article  CAS  Google Scholar 

  • Palm, A., Cousins, I., Gustafsson, Ö., Axelman, J., Grunder, K., Broman, D., & Brorström-Lundén, E. (2004). Evaluation of sequentially-coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air-water-sediment system. Environmental Pollution, 128(1–2), 85–97. https://doi.org/10.1016/j.envpol.2003.08.023

    Article  CAS  Google Scholar 

  • Perillo, G. M. E., Piccolo, M. C., Parodi, E., & Freije, R. H. (2001). The bahia blanca Estuary, Argentina. Berlin: Springer.

    Book  Google Scholar 

  • Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T. A., & Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 72(10), 1594–1601.

    Article  CAS  Google Scholar 

  • Pozo, K., Estellano, V. H., Harner, T., Diaz-Robles, L., Cereceda-Balic, F., Etcharren, P., Pozo, K., Vidal, V., Guerrero, F., & Vergara-Fernández, A. (2015). Assessing polycyclic aromatic hydrocarbons (PAHs) using passive air sampling in the atmosphere of one of the most wood-smoke-polluted cities in Chile: The case study of Temuco. Chemosphere, 134, 475–481. https://doi.org/10.1016/j.chemosphere.2015.04.077

    Article  CAS  Google Scholar 

  • Pozo, K., Harner, T., Lee, S. C., Wania, F., Muir, D. C., & Jones, K. C. (2009). Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environmental Science & Technology, 43(3), 796–803.

    Article  CAS  Google Scholar 

  • Pozo, K., Harner, T., Rudolph, A., Oyola, G., Estellano, V. H., Ahumada-Rudolph, R., & Focardi, S. (2012). Survey of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of rural, urban and industrial areas of Concepcion, Chile, using passive air samplers. Atmospheric Pollution Research, 3(4), 426–434.

    Article  CAS  Google Scholar 

  • Pozo, K., Martellini, T., Corsolini, S., Harner, T., Estellano, V., Kukučka, P., & Cincinelli, A. (2017a). Persistent organic pollutants (POPs) in the atmosphere of coastal areas of the Ross Sea, Antarctica: Indications for long-term downward trends. Chemosphere, 178, 458–465.

    Article  CAS  Google Scholar 

  • Pozo, K., Oyola, G., Estellano, V. H., Harner, T., Rudolph, A., Prybilova, P., & Focardi, S. (2017b). Persistent Organic Pollutants (POPs) in the atmosphere of three Chilean cities using passive air samplers. Science of the Total Environment, 586, 107–114.

    Article  CAS  Google Scholar 

  • Pribylova, P., Kares, R., Boruvkova, J., Cupr, P., Prokes, R., Kohoutek, J., Holoubek, I., & Klanova, J. (2012). Levels of persistent organic pollutants and polycyclic aromatic hydrocarbons in ambient air of Central and Eastern Europe. Atmospheric Pollution Research, 3(4), 494–505. https://doi.org/10.5094/APR.2012.057

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Rehwagen, M., Müller, A., Massolo, L., Herbarth, O., & Ronco, A. (2005). Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Science of the Total Environment, 348(1–3), 199–210. https://doi.org/10.1016/j.scitotenv.2004.12.050

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. Road dust, tire debris, and organometallic brake lining dust: Roads as sources and sinks. Environmental Science & Technology, 27, 1892–1904.

    Article  CAS  Google Scholar 

  • Saini, A., Clarke, J., & Harner, T. (2019). Direct measurements of polyurethane foam (PUF) - air partitioning coefficients for chemicals of emerging concern capable of equilibrating in PUF disk samplers. Chemosphere, 234, 925–930. https://doi.org/10.1016/j.chemosphere.2019.06.134

    Article  CAS  Google Scholar 

  • Sánchez, N. E., Sánchez, A. L., & Espinosa, P. M. (2018a). Levels of Polycyclic Aromatic Hydrocarbons (PAHs) in Atmospheric Environment of Urban Areas in Latin America. Polycyclic Aromatic Compounds, 38(2), 110–119. https://doi.org/10.1080/10406638.2016.1167745

    Article  CAS  Google Scholar 

  • Santiago, E. C., & Cayetano, M. G. (2007a). Polycyclic aromatic hydrocarbons in ambient air in the Philippines derived from passive sampler with polyurethane foam disk. Atmospheric Environment, 41(19), 4138–4147. https://doi.org/10.1016/j.atmosenv.2007.01.021

    Article  CAS  Google Scholar 

  • Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (1999). Measurement of emissions from air pollution sources. 2. C1–through C30 organic compounds from medium dutydiesel trucks. Environmental Science & Technology, 33, 1578–1587.

    Article  CAS  Google Scholar 

  • Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (2001). Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environment Science & Technology, 35, 1716–1728.

    Article  CAS  Google Scholar 

  • Sharma, B. M., Melymuk, L., Bharat, G. K., Přibylová, P., Sáňka, O., Klánová, J., & Nizzetto, L. (2018). Spatial gradients of polycyclic aromatic hydrocarbons (PAHs) in air, atmospheric deposition, and surface water of the Ganges River basin. Science of the Total Environment, 627, 1495–1504.

    Article  CAS  Google Scholar 

  • Shoeib, M., Ahrens, L., Jantunen, L., & Harner, T. (2014). Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada. Atmospheric Environment, 99, 140–147. https://doi.org/10.1016/j.atmosenv.2014.09.040

    Article  CAS  Google Scholar 

  • Shu, Y. Y., Tey, S. Y., & Wu, D. K. S. (2003). Analysis of polycyclic aromatic hydrocarbons in airborne particles using open-vessel focused microwave-assisted extraction. Analytica Chimica Acta, 495(1–2), 99–108. https://doi.org/10.1016/j.aca.2003.08.040

    Article  CAS  Google Scholar 

  • Sjogren, M., Li, H., Rannug, U., & Westerholm, R. (1996). Multivariate analysis of exhaust emissions from heavy-duty diesel fuels. Environment Science & Technology, 30, 38–49.

    Article  Google Scholar 

  • Thang, P. Q., Kim, S. J., Lee, S. J., Kim, C. H., Lim, H. J., Lee, S. B., et al. (2020). Monitoring of polycyclic aromatic hydrocarbons using passive air samplers in Seoul, South Korea: Spatial distribution, seasonal variation, and source identification. Atmospheric Environment, 229, 117460.

  • Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119. https://doi.org/10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  • Tombesi, N., Nievas, M., & Freije, R. H. (2014). Polycyclic aromatic hydrocarbons (PAHs) in sediment. International Journal of Green and Herbal Chemistry Section a: Green Chemistry Research Article, 3(2), 595–601.

    Google Scholar 

  • Tombesi, N., Pozo, K., Arias, A., Alvarez, M., Pribylova, P., Audy, O., & Klánová, J. (2018). Records of organochlorine pesticides in soils and sediments on the southwest of Buenos Aires Province. Environmental Earth Sciences Argentina. https://doi.org/10.1007/s12665-018-7582-4

    Article  Google Scholar 

  • Vardar, N., Tasdemir, Y., Odabasi, M., & Noll, K. E. (2004). Characterization of atmospheric concentrations and partitioning of PAHs in the Chicago atmosphere. Science of the Total Environment, 327(1–3), 163–174. https://doi.org/10.1016/j.scitotenv.2003.05.002

    Article  CAS  Google Scholar 

  • Vergnoux, A., Malleret, L., Asia, L., Doumenq, P., & Theraulaz, F. (2011). Impact of forest fires on PAH level and distribution in soils. Environmental Research, 111(2), 193–198. https://doi.org/10.1016/j.envres.2010.01.008

    Article  CAS  Google Scholar 

  • Wang, Z., Fingas, M., Shu, Y. Y., Sigouin, L., Landriault, M., Lambert, P., et al. (1999). Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs—the 1994 Mobile burn study. Environmental Science & Technology, 33, 3100–3109.

    Article  CAS  Google Scholar 

  • Wang, C., Wang, Y., & Herath, H. M. S. K. (2017a). Polycyclic aromatic hydrocarbons (PAHs) in biochar–Their formation, occurrence and analysis: A review. Organic Geochemistry, 114, 1–11.

    Article  CAS  Google Scholar 

  • Wang, Li., Zhao, Y., Yi, X., Wang, Z., Yi, Y., Huang, T., Gao, H., & Ma, J. (2017b). Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China. Environmental Science and Pollution Research, 24(14), 12820–12834. https://doi.org/10.1007/s11356-017-8808-9

    Article  CAS  Google Scholar 

  • Wang, L., Dong, S., Liu, M., Tao, W., Xiao, B., Zhang, S., Zhang, P., & Li, X. (2019). Polycyclic aromatic hydrocarbons in atmospheric PM2.5 and PM10 in the semi-arid city of Xi’an, Northwest China: Seasonal variations, sources, health risks, and relationships with meteorological factors. Atmospheric Research, 229, 60–73. https://doi.org/10.1016/j.atmosres.2019.06.014

    Article  CAS  Google Scholar 

  • Wenzel, K. D., Weißflog, L., Paladini, E., Gantuz, M., Guerreiro, P., Puliafito, C., & Schüürmann, G. (1997). Immission patterns of airborne pollutants in Argentina and Germany II Biomonitoring of organochlorine compounds and polycyclic aromatics. Chemosphere, 34(12), 2505–2518. https://doi.org/10.1016/S0045-6535(97)00096-9

    Article  CAS  Google Scholar 

  • Westerholm, R., & Li, H. (1994). A multivariate statistical analysis of fuel-related polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles. Environmental Science & Technology, 28(5), 965–972.

    Article  CAS  Google Scholar 

  • Westerholm, R. N., Christensen, A., Tornqvist, M., Ehrenberg, L., Rannug, U., Sjögren, M., et al. (2001). Comparison of exhaust emissions from Swedish Environmental Classified Diesel Fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) reference fuel: A chemical and biological characterization, with viewpoints on cancer risk. Environmental Science & Technology, 35, 1748–1754.

    Article  CAS  Google Scholar 

  • World Health Organization. Regional Office for Europe. (2000). Air quality guidelines for Europe: second edition. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/107335

  • Yunker, M. B., Macdonald, R. W., Goyette, D., Paton, D. W., Fowler, B. R., Sullivan, D., & Boyd, J. (1999). Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia. Science of the Total Environment, 225(3), 181–209. https://doi.org/10.1016/S0048-9697(98)00362-3

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002a). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

  • Zhang, J., Yang, L., Mellouki, A., Chen, J., Chen, X., Gao, Y., & Wang, W. (2018). Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmospheric Environment, 173, 256–264.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés H. Arias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, A.H., Pozo, K.A., Álvarez, M.B. et al. Atmospheric PAHs in rural, urban, industrial and beach locations in Buenos Aires Province, Argentina: sources and health risk assessment. Environ Geochem Health 44, 2419–2433 (2022). https://doi.org/10.1007/s10653-021-01031-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01031-9

Keywords

Navigation