Skip to main content

Advertisement

Log in

Sources, controls, and probabilistic health risk assessment of fluoride contamination in groundwater from a semi-arid region in Gujarat, Western India: An isotope–hydrogeochemical perspective

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Fluoride contamination in groundwaters of a rural region in semi-arid Western India has been studied using combination of geochemical-and-isotopic techniques, in conjunction with Health Quotient assessment approach. The objective of this study is to determine the sources and controls on fluoride content and to evaluate probabilistic non-carcinogenic risk associated with its long-term consumption. F ranges from 0.3 to 12 mg L−1, shows high spatial variability, and ~ 35% of the samples have F  > 1.5 mg L−1 (WHO maximum limit for drinking). Two sources are identified: high F results from water–rock interaction of F-bearing minerals in granites and gneisses, while phosphate fertilizers can contribute up to ~ 0.46 mg L−1 of groundwater F that can be significant for low F samples. High F samples are characterized by high pH, Na and alkalinity, and low Ca. Calcite precipitation drives the solubility of F-bearing minerals. Kinetic fractionation of water isotopes (18O and 2H) demonstrates that evaporation plays role in enriching groundwater F. Non-carcinogenic risk, estimated by Hazard Quotient (\(HQ_{{{\text{oral}}}}^{{\text{F}}}\)), ranges from 0.13–5.72 to 0.26–11.86 for adult and children, respectively. Conservative estimate shows that ~ 0.467 million of adults and~0.073 million of children in four sub-districts are under the risk of fluorosis—while the residents of other five sub-districts remain safe from it. Finally, we suggest stakeholders to install F treatment plants to ensure the health safety of local residents in the high-risk zones, create awareness in farmers for optimum use of fertilizers, and promote rainwater harvesting, for better management of groundwater resources and quality in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

reproduced from the geological map (Mehsana district) of Geological survey of India (GSI)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data were shown in the supporting information.

References

  • Adimalla, N., Li, P., & Qian, H. (2018). Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Human and ecological risk assessment: an international journal. https://doi.org/10.1080/10807039.2018.1460579

    Article  Google Scholar 

  • Ahada, C. P., & Suthar, S. (2019). Assessment of human health risk associated with high groundwater fluoride intake in southern districts of Punjab India. Exposure and Health, 11(4), 267–275. https://doi.org/10.1007/s12403-017-0268-4

    Article  CAS  Google Scholar 

  • Ali, S., Fakhri, Y., Golbini, M., Thakur, S. K., Alinejad, A., Parseh, I., & Bhattacharya, P. (2019). Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk assessment. Groundwater for Sustainable Development, 9, 100224.

    Article  Google Scholar 

  • Apambire, W. B., Boyle, D. R., & Michel, F. A. (1997). Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environmental Geology, 33(1), 13–24. https://doi.org/10.1007/s002540050221

    Article  CAS  Google Scholar 

  • Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: a review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36(6), 433–487. https://doi.org/10.1080/10643380600678112

    Article  CAS  Google Scholar 

  • BIS. (2012). (Bureau of Indian Standards) IS:10500 Indian Standard for Drinking Water Specification. Second Revision.

    Google Scholar 

  • CGWB, 2010. Groundwater quality in shallow aquifers of India.

  • CGWB, Faridabad, p 64.CGWB March 2014. District groundwater brochure Mahesana district, Gujarat.

  • Chae, G. T., Yun, S. T., Mayer, B., Kim, K. H., Kim, S. Y., Kwon, J. S., & Koh, Y. K. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385(1–3), 272–283. https://doi.org/10.1016/j.scitotenv.2007.06.038

    Article  CAS  Google Scholar 

  • Chatterjee, J., & Singh, S. K. (2012). 87Sr/86Sr and major ion composition of rainwater of Ahmedabad, India: Sources of base cations. Atmospheric Environment, 63, 60–67. https://doi.org/10.1016/j.atmosenv.2012.08.060

    Article  CAS  Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., & Vasudevan, S. (2003). Fluoride removal studies in water using natural materials. Water SA, 29(3), 339–344.

    CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC Press.

    Google Scholar 

  • Das, D. K., DK, D., GK, D. B., & AL, K. (1981). Chemical composition of monsoon rainwater over Bhopal, Madhya Pradesh (India) during 1977 and 1978.

  • Das, A., Krishnaswami, S., Sarin, M. M., & Pande, K. (2005). Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls. Geochimica et Cosmochimica Acta, 69(8), 2067–2084.

    Article  CAS  Google Scholar 

  • Datta, P. S., Deb, D. L., & Tyagi, S. K. (1996). Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. Journal of contaminant hydrology, 24(1), 85–96. https://doi.org/10.1016/0169-7722(96)00004-6

    Article  CAS  Google Scholar 

  • Deshpande, R. D., & Gupta, S. K. (2012). Oxygen and hydrogen isotopes in hydrological cycle: new data from IWIN national programme. Proceedings of the Indian National Science Academy, 78(3), 321–331.

    CAS  Google Scholar 

  • Dey, R. K., Swain, S. K., Mishra, S., Sharma, P., Patnaik, T., Singh, V. K., & Patel, R. K. (2012). Hydrogeochemical processes controlling the high fluoride concentration in groundwater: a case study at the Boden block area, Orissa India. Environmental Monitoring and Assessment, 184(5), 3279–3291. https://doi.org/10.1007/s10661-011-2188-2

    Article  CAS  Google Scholar 

  • Dhiman, S. D., & Keshari, A. K. (2006). Hydrogeochemical evaluation of high-fluoride groundwaters: a case study from Mehsana District, Gujarat India. Hydrological Sciences Journal, 51(6), 1149–1162. https://doi.org/10.1623/hysj.51.6.1149

    Article  CAS  Google Scholar 

  • Dissanayake, C. B. (1991). The fluoride problem in the ground water of Sri Lanka—environmental management and health. International Journal of Environmental Studies, 38(2–3), 137–155.

    Article  CAS  Google Scholar 

  • Epstein, S., &Mayeda, T. (1953). Variation of O18 content of waters from natural sources. Geochimicaetcosmochimicaacta, 4(5): 213–224

  • Fuge, R., & Andrews, M. J. (1988). Fluorine in the UK environment. Environmental Geochemistry and Health, 10(3–4), 96–104. https://doi.org/10.1007/BF01758677

    Article  CAS  Google Scholar 

  • Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93(1), 1–12. https://doi.org/10.1016/j.gexplo.2006.07.001

    Article  CAS  Google Scholar 

  • Gupta, S. K., Deshpande, R. D., Agarwal, M., & Raval, B. R. (2005). Origin of high fluoride in groundwater in the North Gujarat-Cambay region India. Hydrogeology Journal, 13(4), 596–605.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1975). Geochemistry and genesis of Fluoride-Containing ground waters in India. Groundwater, 13(3), 275–281.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water . Department of the Interior, US Geological Survey. 2254

  • Jacks, G., Bhattacharya, P., Chaudhary, V., & Singh, K. P. (2005). Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20(2), 221–228. https://doi.org/10.1016/j.apgeochem.2004.07.002

    Article  CAS  Google Scholar 

  • Jha, S. K., Singh, R. K., Damodaran, T., Mishra, V. K., Sharma, D. K., & Rai, D. (2013). Fluoride in groundwater: toxicological exposure and remedies. Journal of Toxicology and Environmental Health, Part B, 16(1), 52–66. https://doi.org/10.1080/10937404.2013.769420

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Kumar, D., Subramani, T., & Roy, P. D. (2020). Sobol sensitivity approach for the appraisal of geomedical health risks associated with oral intake and dermal pathways of groundwater fluoride in a semi-arid region of south India. Ecotoxicology and environmental safety, 194, 110438.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Brahman, K. D., Baig, J. A., & Afridi, H. I. (2018). A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater. Journal of hazardous materials, 357, 159–167.

    Article  CAS  Google Scholar 

  • Kulkarni, V. N. (1985). Geology of Gujarat senior Geologist Engineering Research Institute. PWD.

    Google Scholar 

  • Kumar, S., Venkatesh, A. S., Singh, R., Udayabhanu, G., & Saha, D. (2018). Geochemical signatures and isotopic systematics constraining dynamics of fluoride contamination in groundwater across Jamui district, Indo-Gangetic alluvial plains, India. Chemosphere, 205, 493–505. https://doi.org/10.1016/j.chemosphere.2018.04.116

    Article  CAS  Google Scholar 

  • Kundu, M. C., & Mandal, B. (2009). Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal India. Environmental Monitoring and Assessment, 152(1–4), 97. https://doi.org/10.1007/s10661-008-0299-1

    Article  CAS  Google Scholar 

  • Kundu, N., Panigrahi, M., Tripathy, S., Munshi, S., Powell, M., & Hart, B. (2001). Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa India. Environmental Geology, 41(3–4), 451–460. https://doi.org/10.1007/s002540100414

    Article  CAS  Google Scholar 

  • Li, C., Gao, X., & Wang, Y. (2015). Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Science of the Total Environment, 508, 155–165. https://doi.org/10.1016/j.scitotenv.2014.11.045

    Article  CAS  Google Scholar 

  • Maurya, A. S., Shah, M., Deshpande, R. D., & Gupta, S. K. (2009, November). Protocol for δ18O and δD analyses of water sample using Delta V plus IRMS in CF Mode with Gas Bench II for IWIN National Programme at PRL, Ahmedabad. In 11th ISMAS Triennial Conference of Indian Society for Mass Spectrometry . Indian Society for Mass Spectrometry Hyderabad 314, 314–317

  • Meenakhi,S., & Maheswari, R.C.(2006). Fluoride in drinking water and its removal. Journal of Hazardous Materials, 137(1): 456–463

  • Millar, G. J., Couperthwaite, S. J., Dawes, L. A., Thompson, S., & Spencer, J. (2017). Activated alumina for the removal of fluoride ions from high alkalinity groundwater: new insights from equilibrium and column studies with multicomponent solutions. Separation and Purification Technology, 187, 14–24.

    Article  CAS  Google Scholar 

  • Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context. Environmental geochemistry and health, 40(6), 2259–2301. https://doi.org/10.1007/s10653-018-0096-x

    Article  CAS  Google Scholar 

  • Mukherjee, I., Singh, U. K., & Patra, P. K. (2019). Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India. Chemosphere, 233, 164–173.

    Article  CAS  Google Scholar 

  • Ozsvath, D. L. (2009). Fluoride and environmental health: a review. Reviews in Environmental Science and Bio/Technology, 8(1), 59–79. https://doi.org/10.1007/s11157-008-9136-9

    Article  CAS  Google Scholar 

  • Podgorski, J. E., Labhasetwar, P., Saha, D., & Berg, M. (2018). Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environmental Science & Technology, 52(17), 9889–9898. https://doi.org/10.1021/acs.est.8b01679

    Article  CAS  Google Scholar 

  • Raj, D., & Shaji, E. (2017). Fluoride contamination in groundwater resources of Alleppey, southern India. Geoscience Frontiers, 8, 117–124. https://doi.org/10.1016/j.gsf.2016.01.002

    Article  CAS  Google Scholar 

  • Ramteke, L. P., Sahayam, A. C., Ghosh, A., Rambabu, U., Reddy, M. R. P., Popat, K. M., & Ghosh, P. K. (2018). Study of fluoride content in some commercial phosphate fertilizers. Journal of Fluorine Chemistry, 210, 149–155. https://doi.org/10.1016/j.jfluchem.2018.03.018

    Article  CAS  Google Scholar 

  • Reddy, D. V., Nagabhushanam, P., Sukhija, B. S., Reddy, A. G. S., & Smedley, P. L. (2010). Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District India. Chemical Geology, 269(3–4), 278–289. https://doi.org/10.1016/j.chemgeo.2009.10.003

    Article  CAS  Google Scholar 

  • Saxena, V., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water-rock interaction study. Environmental Geology, 40(9), 1084–1087. https://doi.org/10.1007/s002540100290

    Article  CAS  Google Scholar 

  • Saxena, V., & Ahmed, S. (2003). Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, 43(6), 731–736. https://doi.org/10.1007/s00254-002-0672-2

    Article  CAS  Google Scholar 

  • Schoeller, H. (1967). Geochemistry of groundwater—an international guide for research and practice. UNESCO.

    Google Scholar 

  • Shaji, E., Viju, J., & Thambi, D. S. (2007). High fluoride in groundwater of Palghat District. Kerala. Current Science, 92(2), 240–245.

    CAS  Google Scholar 

  • Shirke, K. D., Kadam, A., & Pawar, N. J. (2020). Health risk assessment and prevalence of fluoride in groundwater around the geological diversity of Ambadongar South Gujarat, India. Human and Ecological Risk Assessment: An International Journal, 1–20. https://doi.org/10.1080/10807039.2020.1858270.

  • Siddique, A., Nayak, A. K., & Singh, J. (2020). Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively. Groundwater for Sustainable Development, 10, 100339.

    Article  Google Scholar 

  • Sreedevi, P. D., Ahmed, S., Madé, B., Ledoux, E., & Gandolfi, J. M. (2006). Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environmental Geology, 50(1), 1–11. https://doi.org/10.1007/s00254-005-0167-z

    Article  CAS  Google Scholar 

  • Sudarshan, V., Srinivas, B., Shankar, S., Narsimha, A., Ravi Kumar, A., Geetha, S., & Ashok, K. (2016). Fluoride distribution in the groundwater of Gangadhara area, Karimnagar district, Telangana India. International Journal Earth Science Engineering, 9(2), 572–577.

    Google Scholar 

  • Susheela, A. K. (1999). Fluorosis management programme in India. CurrSci, 77(10), 1250–1256.

    Google Scholar 

  • The World Bank. 2010. Deep wells and prudence: Towards Pragmatic Action for addressing groundwater overexploitation in India.

  • Tewatia, R. K., & Chanda, T. K. (2017). Trends in fertilizer nitrogen production and consumption in India. The Indian Nitrogen Assessment (pp. 45–56). Elsevier.

    Chapter  Google Scholar 

  • Tiwari, A. N., Nawale, V. P., Tambe, J. A., & Satya Kumar, Y. (2008). Correlation of fluoride with bicarbonate in groundwater of exploratory wells in parts of Maharashtra. Journal of Applied Geochemistry, 10(1), 93–102.

    Google Scholar 

  • Tiwari, K. K., Krishan, G., Prasad, G., Mondal, N. C., & Bhardwaj, V. (2020). Evaluation of fluoride contamination in groundwater in a semi-arid region, Dausa District, Rajasthan India. Groundwater for Sustainable Development, 11, 100465.

    Article  Google Scholar 

  • UNESCO-WWAP.2009.Statistics. International groundwater resources assessment centre.https://www.un-igrac.org/%0A.

  • UNICEF. (1999). States of the art report on the extent of fluoride in drinking water and the resulting endemicity in India. Report by fluorosis and rural development foundation for UNICEF.

    Google Scholar 

  • Valsami-Jones, E., Ragnarsdottir, K. V., Putnis, A., Bosbach, D., Kemp, A. J., & Cressey, G. (1998). The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chemical Geology, 151(1–4), 215–233.

    Article  CAS  Google Scholar 

  • WHO, G. (2011). Guidelines for drinking-water quality. World Health Organization216, 303-4.

  • Wu, J. C., Chen, S. S., Yu, T. C., Wu, K. C. W., & Hou, C. H. (2021). Effective electrochemically controlled removal of fluoride ions using electrodeposited polyaniline-carbon nanotube composite electrodes. Separation and Purification Technology, 254, 117561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Virendra Padhya for his technical support during water isotope analysis. Mr. Meet Panchal is thanked for his help in one of the campaigns. We thank the two anonymous reviewers for their constructive comments.

Funding

The study was funded by Department of Science and Technology, India (SR/FTP/ES-129/2009). Partial funding was made by Pandit Deendayal Petroleum University via Students’ Research Program (ORSP/R&D/SRP/2019/ARJB/029).

Author information

Authors and Affiliations

Authors

Contributions

RM and AD were involved in conceptualization. RM was also involved in sampling, methodology, data curation, visualization and writing-original draft. AD was involved in validation, writing and supervision. AS, SK, AD and RD were involved in reviewing the manuscript. AS and SK were involved in editing. SV, MG and RM contributed to the analysis.

Corresponding author

Correspondence to Anirban Das.

Ethics declarations

Conflict of interest

Authors declare that have no conflicts of interest.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 109 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, R., Das, A., Sudheer, A.K. et al. Sources, controls, and probabilistic health risk assessment of fluoride contamination in groundwater from a semi-arid region in Gujarat, Western India: An isotope–hydrogeochemical perspective. Environ Geochem Health 43, 4043–4059 (2021). https://doi.org/10.1007/s10653-021-00894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00894-2

Keywords

Navigation