Skip to main content

Advertisement

Log in

Air pollution levels near crossroads with different traffic density and the estimation of health risk

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the influence of traffic density on air pollutant levels as well as to analyse the spatial and temporal distribution of particulate pollutants and their health risk. The following species related to traffic pollution were measured: PM10, elemental and organic carbon and polycyclic aromatic hydrocarbons (PAHs) in PM10 and gas pollutants (SO2, NO2 and CO). The measurements were carried out at four crossroad sites in the city. Samples of PM10 were collected over three periods (6 am to 2 pm, 2 pm to 10 pm and 10 pm to 6 am) on working days and weekends. Statistically significant differences were found between sampling sites for all pollutant concentrations, except for NO2. The highest mass concentrations of PM10, carbon and PAHs were observed in the south of the city with the highest traffic density. Concentrations of gasses (CO and NO2) showed high values in morning and in the late afternoon and evening (west and east). At all measuring sites, the highest concentration of particle-bound pollutants was mostly recorded during morning and afternoon, except at the south, where elevated PAHs concentrations were recorded during night period, which indicated that residential heating takes up a portion of pollution sources in this area. Although for most of the pollutants the concentrations varied during the day, statistically significant differences between sampling periods were not found. The highest health risk was obtained at the south, where it was scored as significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agudelo-Castañeda, D. M., & Teixeira, E. C. (2014). Seasonal changes, identification and source apportionment of PAH in PM1.0. Atmospheric Environment, 96, 186–200. https://doi.org/10.1016/j.atmosenv.2014.07.030

    Article  CAS  Google Scholar 

  • Alves, C. A., Vicente, A. M. P., Gomes, J., Nunes, T., Duarte, M., & Bandowe, B. A. M. (2016). Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel. Atmospheric Resarch, 180, 128–137. https://doi.org/10.1016/j.atmosres.2016.05.013

    Article  CAS  Google Scholar 

  • Amarillo, A. C., Busso, I. T., & Carreras, H. (2014). Exposure to polycyclic aromatic hydrocarbons in urban enviroments: Health risk assessment by age groups. Environmental Pollution, 195, 157–162. https://doi.org/10.1016/j.envpol.2014.08.027

    Article  CAS  Google Scholar 

  • Baek, K. M., Kim, M. J., Kim, J. Y., Seo, Y. K., & Baek, S. O. (2020). Characterization and health impact assessment of hazardous air pollutants in residential areas near a large iron-steel industrial complex in Korea. Atmospheric Pollution Research, 11(10), 1754–1766. https://doi.org/10.1016/j.apr.2020.07.009

    Article  CAS  Google Scholar 

  • Balaceanu, C., & Iorga, G. (2010). Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network. EGU General Assembly Conference Abstracts, 12, 2–3.

    Google Scholar 

  • Bartoš, T., Cupr, P., Klánová, J., & Holoubek, I. (2009). Which compounds contribute most to elevated airborne exposure and corresponding health risk in the Western Balkans? Environment Internationa, 35, 1066–1071. https://doi.org/10.1016/j.envint.2009.06.005

    Article  CAS  Google Scholar 

  • Bernalte, E., Sánchez, C. M., Gil, E. P., Balic, F. C., & Cortez, V. V. (2012). An exploratory study of particulate PAHs in low-polluted urban and rural areas of Southwest Spain: Concentrations, source assignment, seasonal variation and correlations with other air pollutants. Water Air Soil Pollution, 223, 5143–5154. https://doi.org/10.1007/s11270-012-1266-6

    Article  CAS  Google Scholar 

  • Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Bernstein, J. A., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S. M., & Williams, P. B. (2004). Health effects of air pollution. Journal of Allergy and Clinical Immunology, 114, 1116–1123. https://doi.org/10.1016/j.jaci.2004.08.030

    Article  Google Scholar 

  • Birch, M. E., & Cary, R. A. (1996). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science and Technology, 25, 221–241. https://doi.org/10.1080/02786829608965393

    Article  CAS  Google Scholar 

  • Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. Lancet, 360, 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8

    Article  CAS  Google Scholar 

  • Burnett, R. T., Pope, C., Arden, I., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R., Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., … Cohen, A. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122, 397–403. https://doi.org/10.1289/ehp.1307049

    Article  Google Scholar 

  • Calderón-Garcidueñas, L., Herrera-Soto, A., Jury, J., Maher, B. A., González-Maciel, A., Reynoso-Robles, R., Ruiz-Rudolph, R., van Zundert, B., & Varela-Nallar, L. (2020). Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environmental Research, 183, 109226. https://doi.org/10.1016/j.envres.2020.109226

    Article  CAS  Google Scholar 

  • Cautreels, W., & Van Cawenberghe, K. (1987). Experiments on the distribution of organic pollutants between airborne particulate matter and the corresponding gas phase. Atmospheric Enviroment, 12, 1133–1141.

    Article  Google Scholar 

  • Cavalli, F., Alastuey, A., Areskoug, H., Ceburnis, D., Čech, J., Genberg, J., Harrison, R. M., Jaffrezo, J. L., Kiss, G., Laj, P., Mihalopoulos, N., Perez, N., Quincey, P., Schwarz, J., Sellegri, K., Spindler, G., Swietlicki, E., Theodosi, C., Yttri, K. E., … Putaud, J. P. (2016). A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe. Atmospheric Environment, 144, 133–145. https://doi.org/10.1016/j.atmosenv.2016.07.050

    Article  CAS  Google Scholar 

  • Cazier, F., Genevray, P., Dewaele, D., Nouali, H., Verdin, A., Ledoux, F., Hachimi, A., Courcot, L., Billet, S., Bouhsina, S., Shirali, P., Garçon, G., & Courcot, D. (2016). Characterisation and seasonal variations of particles in the atmosphere of rural, urban and industrial areas: organic compounds. Journal of Environmental Science. https://doi.org/10.1016/j.jes.2016.01.014

    Article  Google Scholar 

  • Chang, K. F., Fang, G. C., Chen, J. C., & Wu, Y. S. (2006). Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 21004. Environmental Pollution, 142, 388–396. https://doi.org/10.1016/j.envpol.2005.09.025

    Article  CAS  Google Scholar 

  • Chen, S. C., & Liao, C. M. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of Total Enviroment, 366, 112–123. https://doi.org/10.1016/j.scitotenv.2005.08.047

    Article  CAS  Google Scholar 

  • Chow, J. C., Engelbrecht, J. P., Freeman, N. C. G., Hisham Hashim, J., Jantunen, M., Michaud, J. P., De Tejada, S. S., Watson, J. G., Wei, F., Wilson, W. E., Yasuno, M., & Zhu, T. (2002). Chapter one: exposure measurements. Chemosphere, 49, 873–901. https://doi.org/10.1016/S0045-6535(02)00233-3

    Article  CAS  Google Scholar 

  • Census (2011). Croatian Bureau of Statistics. https://www.dzs.hr/default_e.htm

  • Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne particulate matter and human health: A review. Aerosol Science and Technology, 39, 737–749. https://doi.org/10.1080/02786820500191348

    Article  CAS  Google Scholar 

  • Donaldson, K., Mills, N., MacNee, W., Robinson, S., & Newby, D. (2005). Role of inflammation in cardiopulmonary health effects of PM. Toxicology and Applied Pharmacology. https://doi.org/10.1016/j.taap.2005.02.020

    Article  Google Scholar 

  • Environmental Protection Agency (EPA), 2011. Exposure Factors Handbook EPA 600/R-10/030. October 2011 Edition

  • Finardi, S., Radice, P., Cecinato, A., Gariazzo, C., Gherardi, M., & Romagnoli, P. (2017). Urban climate seasonal variation of PAHs concentration and source attribution through diagnostic ratios analysis. Urban Climate, 22, 19–34. https://doi.org/10.1016/j.uclim.2015.12.001

    Article  Google Scholar 

  • Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., … Gilardoni, S. (2015). Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 15, 8217–8299. https://doi.org/10.5194/acp-15-8217-2015

    Article  CAS  Google Scholar 

  • Gaga, E. O., & Arı, A. (2018). Gas-particle partitioning and health risk estimation of polycyclic aromatic hydrocarbons (PAHs) at urban, suburban and tunnel atmospheres: Use of measured EC and OC in model calculations. Atmospheric Pollution Research. https://doi.org/10.1016/j.apr.2018.05.004

    Article  Google Scholar 

  • Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric Environment, 42, 8139–8149.

    Article  CAS  Google Scholar 

  • Gibson, M. D., Kundu, S., & Satish, M. (2013). Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmospheric Pollution Research, 4, 157–167. https://doi.org/10.5094/APR.2013.016

    Article  CAS  Google Scholar 

  • Godec, R., Čačković, M., Šega, K., & Bešlić, I. (2012). Winter mass concentrations of carbon species in PM10, PM2.5 and PM1 in zagreb air, Croatia. Bulletin of Environmental Contamination and Toxicology, 89(5), 1087–1090.

    Article  CAS  Google Scholar 

  • Godec, R., Jakovljević, I., Šega, K., Čačković, M., Bešlić, I., Davila, S., & Pehnec, G. (2016). Carbon species in PM 10 particle fraction at different monitoring sites. Environmental Pollution, 216, 700–710. https://doi.org/10.1016/j.envpol.2016.06.034

    Article  CAS  Google Scholar 

  • Grahame, T. J., Klemm, R., & Schlesinger, R. B. (2014). Public health and components of particulate matter: The changing assessment of black carbon. Journal of the Air and Waste Management Association., 64, 620–660. https://doi.org/10.1080/10962247.2014.912692

    Article  CAS  Google Scholar 

  • Hak, C., Larssen, S., Randall, S., Guerreiro, C., Denby, B., Horálek, J. (2010). Traffic and Air Quality - Contribution of traffic to Urban Air Quality in European Cities. European Topic Centre on Air and Climate Change, Bilthoven (ETC/ACC Technical paper, 2009/12).

  • Hanedar, A., Alp, K., Kaynak, B., & Avşar, E. (2014). Toxicity evaluation and source apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) at three stations in Istanbul, Turkey. Science of the Total Environment, 488–489, 437–446. https://doi.org/10.1016/j.scitotenv.2013.11.123

    Article  CAS  Google Scholar 

  • Hassan, S. K. (2018). Particle-bound polycyclic aromatic hydrocarbon in the atmosphere of heavy traffic areas in Greater Cairo, Egypt: status, source, and human health risk assessment. Atmosphere (Basel). https://doi.org/10.3390/atmos9100368

    Article  Google Scholar 

  • Environmental Protection Agency (EPA), 2003. Integrated risk information system. http://www.epa.gov/iris

  • Iorga, G. (2016). Air pollution monitoring: A case study from Romania. Air Quality Measurement Modelling. https://doi.org/10.5772/64919

    Article  Google Scholar 

  • Jaafari, J., Naddafi, K., Yunesian, M., Nabizadeh, R., Hassanvand, M. S., Ghozikali, M. G., Shamsollahi, H. R., Nazmara, S., & Yaghmaeian, K. (2019). Characterization, risk assessment and potential sources identification of PM10 in Teheran. Microchemical Journal, 154, 104533. https://doi.org/10.1016/j.microc.2019.104533

    Article  CAS  Google Scholar 

  • Jakovljević, I., Pehnec, G., Šišović, A., Vađić, V., Davila, S., & Godec, R. (2016). Concentrations of PAHs and other gaseous pollutants in the atmosphere of a rural area. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering. https://doi.org/10.1080/10934529.2016.1170431

    Article  Google Scholar 

  • Jakovljević, I., Pehnec, G., Vadjić, V., Šišović, A., Davila, S., & Bešlić, I. (2015). Carcinogenic activity of polycyclic aromatic hydrocarbons bounded on particle fraction. Environmental Science and Pollution Research, 22, 15931–15940. https://doi.org/10.1007/s11356-015-4777-z

    Article  CAS  Google Scholar 

  • Jelić, D., & Klaić, Z. B. (2010). Air quality in Rijeka, Croatia. Geofizika, 27, 147–167.

    Google Scholar 

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367. https://doi.org/10.1016/j.envpol.2007.06.012

    Article  CAS  Google Scholar 

  • Karanasiou, A., Minguillón, M. C., Viana, M., Alastuey, A., Putaud, J.-P., Maenhaut, W., Panteliadis, P., Močnik, G., Favez, O., & Kuhlbusch, T. A. J. (2015). Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmospheric Measurement Techniques Discussions, 8, 9649–9712. https://doi.org/10.5194/amtd-8-9649-2015

    Article  Google Scholar 

  • Keuken, M. P., Moerman, M., Voogt, M., Blom, M., Weijers, E. P., Rockmann, T., & Dusek, U. (2013). Source contributions to PM2.5 and PM10 at an urban background and a street location. Atmospheric Environment, 71, 26–35. https://doi.org/10.1016/j.atmosenv.2013.01.032

    Article  CAS  Google Scholar 

  • Kosztowniak, E., Ciężka, M., Zwoździak, A., & Górka, M. (2015). OC/EC from PM10 in the vicinity of Turów lignite open-pit mine (SW Poland): Carbon isotopic approach. Atmospheric Pollution Research. https://doi.org/10.1016/j.apr.2015.07.003

    Article  Google Scholar 

  • Kuo, C., Chen, H., Cheng, F., Huang, L. R., Chien, P. S., & Wang, J. Y. (2012). Polycyclic aromatic hydrocarbons in household dust near diesel transport routes. Environmental Geochemistry and Health, 34, 77–87. https://doi.org/10.1007/s10653-011-9392-4

    Article  CAS  Google Scholar 

  • Kuo, C. Y., Chien, P. S., Kuo, W. C., Wei, C. T., & Jui-Yeh Rau, J. Y. (2012). Comparison of polycyclic aromatic hydrocarbon emission on gasoline - and diesel - dominated routes. Environmental Monitoring and Assessment, 185, 5749–5761. https://doi.org/10.1007/s10661-012-2981-6

    Article  CAS  Google Scholar 

  • Lewtas, J. (2007). Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research/Reviews in Mutation Research, 636, 95–133. https://doi.org/10.1016/j.mrrev.2007.08.003

    Article  CAS  Google Scholar 

  • Lyall, R., Hooper, M. A., & Mainwaring, S. J. (1988). Polycyclic aromatic hydrocarbons in the Latrobe Valley. Atmospheric Environment, 22, 2549–2555. https://doi.org/10.1016/0004-6981(88)90487-8

    Article  CAS  Google Scholar 

  • Manoli, E., Kouras, A., Karagkiozidou, O., Argyropoulos, G., Voutsa, D., & Samara, C. (2016). Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: Source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environmental Science and Pollution. Research, 23, 3556–3568. https://doi.org/10.1007/s11356-015-5573-5

    Article  CAS  Google Scholar 

  • Masiol, M., Hofer, A., Squizzato, S., Piazza, R., Rampazzo, G., & Pavoni, B. (2012). Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: A source apportionment. Atmospheric Environment, 60, 375–382. https://doi.org/10.1016/j.atmosenv.2012.06.073

    Article  CAS  Google Scholar 

  • Mastral, A. M., Callén, M. S., López, J. M., Murillo, R., García, T., & Navarro, M. V. (2003). Critical review on atmospheric PAH. Assessment of reported data in the Mediterranean basin. Fuel Processing Technology, 80, 183–193. https://doi.org/10.1016/S0378-3820(02)00249-7

    Article  CAS  Google Scholar 

  • Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost, G. J., Generoso, S., … von Glasow, R. (2009). Atmospheric composition change – global and regional air quality. Atmospheric Environment, 43, 5268–5350. https://doi.org/10.1016/j.atmosenv.2009.08.021

    Article  CAS  Google Scholar 

  • Oliveri Conti, G., Heibati, B., Kloog, I., Fiore, M., & Ferrante, M. (2017). A review of AirQ Models and their applications for forecasting the air pollution health outcomes. Environmental Science and Pollution Research, 24, 6426–6445. https://doi.org/10.1007/s11356-016-8180-1

    Article  Google Scholar 

  • Pateraki, S., Manousakas, M., Bairachtari, K., Kantarelou, V., Eleftheriadis, K., Vasilakos, C., Assimakopoulos, V. D., & Maggos, T. (2019). The traffic signature on the vertical PM profile: Environmental and health risks within an urban roadside environment. Science of Total Environment, 646, 448–459. https://doi.org/10.1016/j.scitotenv.2018.07.289

    Article  CAS  Google Scholar 

  • Pehnec, G., & Jakovljević, I. (2018). Carcinogenic potency of airborne polycyclic aromatic hydrocarbons in relation to the particle fraction size. International Journal of Environmental Research and Public Health, 15, 2485. https://doi.org/10.3390/ijerph15112485

    Article  CAS  Google Scholar 

  • Pehnec, G., Jakovljević, I., Godec, R., Sever Štrukil, Z., Žero, S., Huremović, J., & Džepina, K. (2020). Carcinogenic organic content of particulate matter at urban locations with different pollution sources. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139414

    Article  Google Scholar 

  • Perez, L., Declercq, C., Inĩguez, C., Aguilera, I., Badaloni, C., Ballester, F., Bouland, C., Chanel, O., Cirarda, F. B., Forastiere, F., Forsberg, B., Haluza, D., Hedlund, B., Cambra, K., Lacasanã, M., Moshammer, H., Otorepec, P., Rodriǵuez-Barranco, M., & MedinaKunzli, S. N. (2013). Chronic burden of near-roadway traffic pollution in 10 European cities (APHEKOM network). European Respiratory Journal, 42, 594–605. https://doi.org/10.1183/09031936.00031112

    Article  Google Scholar 

  • Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., Sanchez de la Campa, A., Artíñano, B., & Matos, M. (2011). OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment, 45, 6121–6132. https://doi.org/10.1016/j.atmosenv.2011.08.045

    Article  CAS  Google Scholar 

  • Pöhlker, M. L., Ditas, F., Saturno, J., Klimach, T., Hrabě de Angelis, I., Araùjo, A., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Kandler, K., Kesselmeier, J., Könemann, T., Lavrič, J. V., Martin, S. T., Mikhailov, E., Moran-Zuloaga, D., … Pöhlker, C. (2017). Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 2: Variability and characteristic differences under near-pristine, biomass burning, and long-range transport conditions. Atmospheric chemistry and physics, Discussionshttps://doi.org/10.5194/acp-2017-847

  • Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44, 7520–7540. https://doi.org/10.1002/anie.200501122

    Article  CAS  Google Scholar 

  • Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R. M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A. M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., … Raes, F. (2010). A European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44, 1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011

    Article  CAS  Google Scholar 

  • Samara, C., Voutsa, D., Kouras, A., Eleftheriadis, K., Maggos, T., Saraga, D., & Petrakakis, M. (2014). Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece. Environmental Science and Pollution Research, 21, 1769–1785. https://doi.org/10.1007/s11356-013-2052-8

    Article  CAS  Google Scholar 

  • Sari, M. F., Del Águila, D. A. C., Tasdemir, Y., & Esen, F. (2020). Atmospheric concentration, source identification, and health risk assessment of persistent organic pollutants (POPs) in two countries: Peru and Turkey. Environmental Monitoring and Assessment, 192, 655. https://doi.org/10.1007/s10661-020-08604-8

    Article  CAS  Google Scholar 

  • Shen, M., Liu, G., Yin, H., & Zhou, L. (2020). Distribution, sources and health risk of PAHs in urban air-conditioning dust from Hefei, East China. Ecotoxicology and Environmental Safety, 194, 110442. https://doi.org/10.1016/j.ecoenv.2020.110442

    Article  CAS  Google Scholar 

  • Šimić, I., Lovrić, M., Godec, R., Kröll, M., & Bešlić, I. (2020). Applying machine learning methods to better understand, model and estimate mass concentrations of traffic-related pollutants at a typical street canyon. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.114587

    Article  Google Scholar 

  • Šišović, A., & Fugaš, M. (1991). Comparative Evaluation of Procedures for the Determination of PAH in Low-Volume Samples. Environmental Monitoring and Assessment, 18, 235–241.

    Article  Google Scholar 

  • Šišović, A., Pehnec, G., Jakovljević, I., Šilović Hujić, M., Vadjić, V., & Bešlić, I. (2012). Polycyclic aromatic hydrocarbons at different crossroads in Zagreb, Croatia. Bulletin of Environmental Contamimation and Toxicology, 88, 438–442. https://doi.org/10.1007/s00128-011-0516-4

    Article  CAS  Google Scholar 

  • Stankovic, S., Vaskovic, V., Petrovic, N., & Radojicic, Z. (2012). Sustainable air pollution management in urban areas caused by traffic: Case study Banja Luka. Technics Technologies Education Management, 7, 1615–1619.

    Google Scholar 

  • Teixeira, E. C., Agudelo-Castañeda, D. M., Fachel, J. M. G., Leal, K. A., Garcia, K. O., & Wiegand, F. (2012). Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmospheric Research, 118, 390–403. https://doi.org/10.1016/j.atmosres.2012.07.004

    Article  CAS  Google Scholar 

  • Van Dingenen, R., Raes, F., Putaud, J.-P.P., Baltensperger, U., Charron, A., Facchini, M.-C.C., Decesari, S., Fuzzi, S., Gehrig, R., Hansson, H.-C.C., Harrison, R. M., Hüglin, C., Jones, A. M., Laj, P., Lorbeer, G., Maenhaut, W., Palmgren, F., Querol, X., Rodriguez, S., Wåhlin, P. (2004). A European aerosol phenomenology - 1: Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environmental, 38, 2561–2577. https://doi.org/10.1016/j.atmosenv.2004.01.040

    Article  CAS  Google Scholar 

  • Van Houdt, J. J., Alink, G. M., & Boleij, J. S. M. (1987). Mutagenicity of airborne particles related to meteorological and air pollution parameters. Science of the Total Environment, 61, 23–36. https://doi.org/10.1016/0048-9697(87)90353-6

    Article  Google Scholar 

  • Wang, J., Xu, H., Guinot, B., Li, L., Ho, S. S. H., Liu, S., Li, X., & Cao, J. (2017). Concentrations, sources and health effects of parent, oxygenated- and nitrated- polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi’an, China. Atmospheric Research, 192, 1–10. https://doi.org/10.1016/j.atmosres.2017.03.006

    Article  CAS  Google Scholar 

  • Yin, W., Hou, J., Xu, T., Cheng, J., Li, P., Wang, L., Zhang, Y., Wang, X., Hu, C., Huang, C., Yu, Z., & Yuan, J. (2018). Obesity mediated the association of exposure to polycyclic aromatic hydrocarbons with risk of cardiovascular events. Science of the Total Environment, 616–617, 841–854. https://doi.org/10.1016/j.scitotenv.2017.10.238

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

  • Zhang, Z., Huang, J., Yu, G., & Hong, H. (2004). Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution, 130, 249–261. https://doi.org/10.1016/j.envpol.2003.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the company Integrated Traffic of Zagreb Area Ltd. and Milan Živković, MSc for providing us with traffic

density data for all sampling stations.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

IJ contributed to conceptualization, validation, formal analysis, investigation, writing—original draft, visualization, RG contributed to conceptualization, validation, formal analysis, investigation, writing—original draft, visualization, SD contributed to software, validation, investigation, KŠ contributed to software, formal analysis, writing—original draft, supervision, project administration, IB contributed to software, formal analysis, writing—review and editing, visualization, JR contributed to validation, writing—review and editing, GP contributed to writing—review and editing,

Corresponding author

Correspondence to Ivana Jakovljević.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godec, R., Jakovljević, I., Davila, S. et al. Air pollution levels near crossroads with different traffic density and the estimation of health risk. Environ Geochem Health 43, 3935–3952 (2021). https://doi.org/10.1007/s10653-021-00879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00879-1

Keywords

Navigation