Skip to main content
Log in

Geographical variations in arsenic contents in rice plants from Latin America and the Iberian Peninsula in relation to soil conditions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic is a ubiquitous, toxic element that is efficiently accumulated by rice plants. This study assessed the spatial variability in the total As (tAs) contents and organic and inorganic forms in different types of rice, plant parts (husk, stem, leaves and phytoliths) and residues. Samples were collected in different countries in Latin America (Ecuador, Brazil and Peru) and the Iberian Peninsula (Spain and Portugal). The tAs content in commercial polished rice from the Latin American countries was similar (0.130–0.166 mg kg−1) and significantly lower than in the rice from the Iberian countries (0.191 ± 0.066 mg kg−1), and together, the tAs concentration in brown rice (236 ± 0.093 mg kg−1) was significantly higher than in polished and parboiled rice. The inorganic As (iAs) content in rice was similar in both geographical regions, and the aforementioned difference was attributed to dimethylarsinic acid (DMA). The relative abundance of organic species increased as the tAs content in rice grain increased. A meta-analysis of our and previously reported data confirmed the negative correlation between iAs/tAs and tAs. At low tAs concentrations, inorganic forms are dominant, while at higher values (tAs > 0.300 mg kg−1) the concentration of organic As increases substantially and DMA becomes the dominant form in rice grain. On the contrary, inorganic arsenic was always the dominant form, mainly as arsenate [As(V)], in leaves and stems. The presence in soils of high concentrations of amorphous Fe and Al oxides and hydroxides, which are capable of strongly adsorbing oxyanions (i.e. arsenate), was associated with low concentrations of As in rice plants. In addition, the presence of high concentrations of As(V) in stems and leaves, low concentration of As in phytoliths, and the As associated with organic matter in stems and husk, together suggest that rice plants take up more As(V) than As(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Masscheleyn et al. (1991)

Similar content being viewed by others

References

  • Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128, 1120–1128. https://doi.org/10.1104/pp.010733.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (Ed.). (2013). Heavy metals in soils (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Appleton, J. D. T. M., Williams, T. M., Orbea, H., & Carrasco, M. (2001). Fluvial contamination associated with artisanal gold mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija areas, Ecuador. Water, Air, and Soil pollution, 13, 19–39. https://doi.org/10.1023/A:1011965430757.

    Article  Google Scholar 

  • Arao, T., Kawasaki, A., Baba, K., Mori, S., & Matsumoto, S. (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science and Technology, 43, 9361–9367.

    CAS  Google Scholar 

  • Batista, B. L., De Oliveira Souza, V. C., Da Silva, G. F., & Barbosa, F., Jr. (2010). Survey of 13 trace elements of toxic and nutritional significance in rice from Brazil and exposure assessment. Food Additives & Contaminants, 3, 253–262. https://doi.org/10.1080/19393210.2010.516024.

    Article  CAS  Google Scholar 

  • Batista, B. L., Souza, J. M. O., De Souza, S. S., & Barbosa, F. (2011). Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. Journal of Hazardous Materials, 191, 342–348. https://doi.org/10.1016/j.jhazmat.2011.04.087.

    Article  CAS  Google Scholar 

  • Blakemore, L. C. (1978). Exchange complex dominated by amorphous material (ECDAM). In G. D. Smith (Ed.), The andisol proposal. Soil Bureau (pp. 21–22). New Delhi: DSIR.

    Google Scholar 

  • Bruland, K. W., Franks, R. P., Knauer, G. A., & Martin, J. H. (1979). Sampling and analytical methods for the nanogram per liter determination of copper, cadmium, zinc, and nickel in seawater. Analytica Chimica Acta, 105, 233–241.

    CAS  Google Scholar 

  • Buján, E. (2013). Elemental composition of phytoliths in modern plants (Ericaceae). Quaternary International, 297, 114–120.

    Google Scholar 

  • Bundschuh, J., Litter, M. I., Parvez, F., Román, G., Nicolli, H. B., Jean, J. S., et al. (2012a). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024.

    Article  CAS  Google Scholar 

  • Bundschuh, J., Nath, B., Bhattacharya, P., Liu, C. W., Armienta, M. A., Moreno, M. V., et al. (2012b). Arsenic in the human food chain: The Latin American perspective. Science of the Total Environment, 429, 92–106. https://doi.org/10.1016/j.scitotenv.2011.09.069.

    Article  CAS  Google Scholar 

  • Canfield, D. E., Raiswell, R., & Bottrell, S. (1992). The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292, 659–683. https://doi.org/10.2475/ajs.292.9.659.

    Article  CAS  Google Scholar 

  • Carey, A. M., Norton, G. J., Deacon, C., Scheckel, K. G., Lombi, E., Punshon, T., et al. (2011). Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytologist, 192, 87–98. https://doi.org/10.1111/j.1469-8137.2011.03789.x.

    Article  CAS  Google Scholar 

  • Cheajesadagul, P., Shiowatana, J., Siripinyanond, A., & Szpunar, J. (2013). Rice Comprehensive Analytical Chemistry, 60, 623–655. https://doi.org/10.1016/B978-0-444-59562-1.00024-4.

    Article  CAS  Google Scholar 

  • Chen, H.-L., Lee, C.-C., Huang, W.-J., Huang, H.-T., Wu, Y.-C., Hsu, Y.-C., et al. (2016). Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. Environmental Science and Pollution Research International, 23, 4481–4488. https://doi.org/10.1007/s11356-015-5623-z.

    Article  CAS  Google Scholar 

  • Chen, H., Tang, Z., Wang, P., & Zhao, F.-J. (2018). Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution, 238, 482–490. https://doi.org/10.1016/j.envpol.2018.03.048.

    Article  CAS  Google Scholar 

  • Cumbal, L., Vallejo, P., Rodriguez, B., & Lopez, D. (2010). Arsenic in geothermal sources at the north-central Andean region of Ecuador: Concentrations and mechanisms of mobility. Environmental Earth Sciences, 61, 299–310. https://doi.org/10.1007/s12665-009-0343.

    Article  CAS  Google Scholar 

  • Delarmelinda, E. A., de Souza Jr, V., Wadt, P. G., Deng, Y., Campos, M. C., & Câmara, E. R. (2017). Soil-landscape relationship in a chronosequence of the middle Madeira River in southwestern Amazon, Brazil. CATENA, 149, 199–208.

    CAS  Google Scholar 

  • De la Torre, E., Guevara, A., Muñoz, G., & Criollo E. (2004). Estudio de aguas superficiales y sedimentos de la cuenca de los ríos Sucus, Tambo y Papallacta. Quito, Ecuador. Unpublished report for the Ecuadorian Congress.

  • de Sousa, R. O., Vahl, L. C., & Otero, X. L. (2009). Química dos solos alagados. In V. F. Melo & L. R. F. Alleoni (Eds.), Química e mineralogia do solo (Vol. 2, pp. 485–528). Viçosa: Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Dos Santos, G. M., Pozebon, D., Cerveira, C., & de Moraes, D. P. (2017). Inorganic arsenic speciation in rice products using selective hydride generation and atomic absorption spectrometry (AAS). Microchemical Journal, 133, 265–271.

    Google Scholar 

  • E.C. (2015). Commission regulation 2015/1006 of 25 June 2015 amending regulation 461 (EC) no 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs, pp 462–463. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:JOL_2015_161_R_0006. Accessed November 02, 2015.

  • Espinosa, J., Moreno, J., & Bernal, G. (Eds.). (2018). The soils of Ecuador. Berlin: Springer.

    Google Scholar 

  • Esteban, I., Marean, C. W., Fisher, E. C., Karkanas, P., Cabanes, D., & Albert, R. M. (2018). Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5–6 (south coast, South Africa). PLoS ONE, 13(6), e0198558. https://doi.org/10.1371/journal.pone.0198558.

    Article  CAS  Google Scholar 

  • Ewers, U. (1991). Standards, guidelines and legislative regulatory concerning metals and their compounds. In E. Merian (Ed.), Metals and their compounds in the environment (pp. 707–711). Weinheim: VCH Publishers.

    Google Scholar 

  • FAOSTAT. (2018). Food and Agriculture Organization. Food Balance Sheets.

  • Fransisca, Y., Small, D. M., Morrison, P. D., Spencer, M. J. S., Ball, A. S., & Jones, O. A. H. (2015). Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practises and soil geochemistry. Chemosphere, 138, 1008–1013. https://doi.org/10.1016/j.chemosphere.2014.12.048.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (pp. 383–411). Madison: American Society of Agronomy, and Soils Science of America.

    Google Scholar 

  • Geng, A., Wang, X., Wu, L., Wang, F., Chen, Y., Yang, H., et al. (2017). Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil. Ecotoxicology and Environmental Safety, 137, 172–178.

    CAS  Google Scholar 

  • Georgiadis, A., Sauer, D., Herrmann, L., Breuer, J., Zarei, M., & Stahr, K. (2013). Development of a method for sequential Si extraction from soils. Geoderma, 209, 251–261.

    Google Scholar 

  • Hu, P., Ouyang, Y., Wu, L., Shen, L., Luo, Y., & Christie, P. (2015). Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences, 27, 225–231. https://doi.org/10.1016/j.jes.2014.05.048.

    Article  CAS  Google Scholar 

  • Huang, J.-H., Ilgen, G., & Fecher, P. (2010). Quantitative chemical extraction for arsenic speciation in rice grains. Journal of Analytical Atomic Spectrometry, 25, 800–802. https://doi.org/10.1039/c002306j.

    Article  CAS  Google Scholar 

  • INEC. (2013). Anuario estadístico 2013 Ecuador (Quito, Ecuador).

  • Islam, S., Rahman, M. M., Islam, M. R., & Naidu, R. (2016). Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. Environment International, 96, 139–155. https://doi.org/10.1016/j.envint.2016.09.006.

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB. (2014). World reference base for soil resources 2014. In International soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, Rome. http://www.fao.org/3/i3794en/I3794en.pdf.

  • Jackson, M. L. (1979). Soil chemical analysis: Advanced course (2nd ed.). Wisconsin: Madison.

    Google Scholar 

  • Jia, Y., Sun, G.-X., Huang, H., & Zhu, Y.-G. (2013). Biogas slurry application elevated arsenic accumulation in rice plant through increased arsenic release and methylation in paddy soil. Plant and Soil, 365, 387–396. https://doi.org/10.1007/s11104-012-1391-4.

    Article  CAS  Google Scholar 

  • Khan, M. A., Stroud, J. L., Zhu, Y. G., McGrath, S. P., & Zhao, F. J. (2010). Arsenic bioavailability to rice is elevated in Bangladesh in paddy soils. Environmental Science and Technology, 44, 8515–8521. https://doi.org/10.1021/es101952f.

    Article  CAS  Google Scholar 

  • Kumarathilaka, P., Seneweera, S., Meharg, A., & Bundschuh, J. (2018). Arsenic speciation dynamics in paddy rice soil-water environment: Sources, physico-chemical, and biological factors—A review. Water Research, 140, 403–414. https://doi.org/10.1016/j.watres.2018.04.034.

    Article  CAS  Google Scholar 

  • Li, R.-Y., Ago, Y., Liu, W.-J., Mitani, N., Feldmann, J., McGrath, S. P., et al. (2009). The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiology, 150, 2071–2080. https://doi.org/10.1104/pp.109.140350.

    Article  CAS  Google Scholar 

  • Livesey, N. T., & Huang, P. M. (1981). Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Science, 131, 88–94. https://doi.org/10.1097/00010694-198102000-00004.

    Article  CAS  Google Scholar 

  • Lomax, C., Liu, W. J., Wu, L. Y., Xue, K., Xiong, J. B., Zhou, J. Z., et al. (2012). Methylated arsenic species in plants originate from soil microorganisms. New Phytologist, 193, 665–672. https://doi.org/10.1111/j.1469-8137.2011.03956.x.

    Article  CAS  Google Scholar 

  • Lombi, E., Scheckel, K. G., Pallon, J., Carey, A. M., Zhu, Y. G., & Meharg, A. A. (2009). Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytologist, 184, 193–201. https://doi.org/10.1111/j.1469-8137.2009.02912.x.

    Article  CAS  Google Scholar 

  • Ma, R., Shen, J., Wu, J., Tang, Z., Shen, Q., & Zhao, F.-J. (2014). Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environmental Pollution, 194, 217–223.

    CAS  Google Scholar 

  • Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., et al. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States, 105, 9931–9935. https://doi.org/10.1073/pnas.0802361105.

    Article  Google Scholar 

  • Mandal, B., & Suzuki, K. (2002). Arsenic round the world: A review. Talanta, 58, 201–2035.

    CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419.

    CAS  Google Scholar 

  • Matschullat, J. (2000). Arsenic in the geosphere—A review. Science of the Total Environment, 249, 297–312. https://doi.org/10.1016/S0048-9697(99)00524-0.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Rahman, M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology, 37, 229–234. https://doi.org/10.1021/es0259842.

    Article  CAS  Google Scholar 

  • Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., et al. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology, 43(5), 1612–1617. https://doi.org/10.1021/es802612a.

    Article  CAS  Google Scholar 

  • Meharg, A. A., & Zhao, F. J. (2012). Arsenic and rice. Dordrech: Springer. https://doi.org/10.1017/S0014479712000713.

    Book  Google Scholar 

  • Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of the Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416. https://doi.org/10.1080/00103628409367568.

    Article  CAS  Google Scholar 

  • Mladenov, N., Zheng, Y., Miller, M. P., Nemergut, D. R., Legg, T., Simone, B., et al. (2010). Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environmental Science and Technology, 44, 123–128. https://doi.org/10.1021/es901472g.

    Article  CAS  Google Scholar 

  • Mladenov, N., Zheng, Y., Simone, B., Bilinski, T. M., McKnight, D. M., Nemergut, D., et al. (2015). Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility. Environmental Science and Technology, 49, 10815–10824.

    CAS  Google Scholar 

  • Moreno, J., Sevillano, G., Valverde, O., Loayza, V., Haro, R., & Zambrano, J. (2018). Soil from the coastal plane. Chapter 2. In J. Espinosa, J. Moreno, & G. Bernal (Eds.), The soils of Ecuador. Berlin: Springer. https://doi.org/10.1007/978-3-319-25319-0_2.

    Chapter  Google Scholar 

  • Norton, G. J., Adomako, E. E., Deacon, C. M., Carey, A.-M., Price, A. H., & Meharg, A. A. (2013). Effect of organic matter amendment: Arsenic amendment and water management regime on rice grain arsenic species. Environmental Pollution, 177, 38–47. https://doi.org/10.1016/j.envpol.2013.01.049.

    Article  CAS  Google Scholar 

  • Norton, G. J., Islam, M. R., Duan, G., Lei, M., Zhu, Y., Deacon, C. M., et al. (2010). Arsenic shoot-grain relationships in field grown rice cultivars. Environmental Science and Technology, 44(4), 1471–1477. https://doi.org/10.1021/es902992d.

    Article  CAS  Google Scholar 

  • Norton, G. J., Pinson, S. R. M., Alexander, J., McKay, S., Hansen, H., Duan, G.-L., et al. (2012). Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites. New Phytologist, 193, 650–664. https://doi.org/10.1111/j.1469-8137.2011.03983.x.

    Article  CAS  Google Scholar 

  • Nunes, L., & Otero, X. L. (2017). Quantification of health risks in Ecuadorian population due to dietary ingestion of arsenic in rice. Environmental Science and Pollution Research, 24, 27457–27468. https://doi.org/10.1007/s11356-017-0265-y.

    Article  CAS  Google Scholar 

  • Otero, X. L., & Ruales, J. (2016). Calidad de los agrosistemas productores de arroz de las provincias de Los Ríos y Guayas. Contenido de elementos tóxicos con especial énfasis en la dinámica del arsénico. Inedict report. Senescyt. Ecuador, 88 pp.

  • Otero, X. L., Tierra, W., Atiaga, O., Guanoluisa, D., Nunes, L. M., Ferreira, T. O., et al. (2016). Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador. Science of the Total Environment, 573, 778–787. https://doi.org/10.1016/j.scitotenv.2016.08.162.

    Article  CAS  Google Scholar 

  • Ovalle, A. R. C., Silva, C. F., Rezende, C. E., et al. (2013). Long-term trends in hydrochemistry in the Paraíba do Sul River, Southeastern Brazil. Journal of Hydrology, 481, 191–203. https://doi.org/10.1016/j.jhydrol.2012.12.036.

    Article  CAS  Google Scholar 

  • Paikaray, S., Banerjee, S., & Mukherji, S. (2005). Sorption of arsenic onto Vindhyan shales: Role of pyrite and organic carbon. Current Science, 10, 1580–1585.

    Google Scholar 

  • Pais, I., & Jones, J. B., Jr. (1997). The handbook of trace elements. Boca Raton, Florida: St. Lucie Press.

    Google Scholar 

  • Parr, J. F., Lentfer, C. J., & Boyd, W. E. (2001). A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plat material. Journal of Archeological Science, 28, 875–886.

    Google Scholar 

  • Pedron, T., Segura, F. R., da Silva, F. F., de Souza, A. L., Maltez, H. F., & Batista, B. L. (2016). Essential and non-essential elements in Brazilian infant food and other rice-based products frequently consumed by children and celiac population. Journal of Food Composition and Analysis, 49, 78–86. https://doi.org/10.1016/j.jfca.2016.04.005.

    Article  CAS  Google Scholar 

  • Pinto, E., Almeida, A., & Ferreira, I. (2016). Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. Journal of Food Composition and Analysis, 48, 81–87. https://doi.org/10.1016/j.jfca.2016.02.008.

    Article  CAS  Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Thousand Oaks: AltaMira Press.

    Google Scholar 

  • Pizarro, I., Gómez, M., Cámara, C., & Palacios, M. A. (2003). Arsenic speciation in environmental and biological samples: Extraction and stability studies. Analytica Chimica Acta, 495, 85–98. https://doi.org/10.1016/j.aca.2003.08.009.

    Article  CAS  Google Scholar 

  • Raab, A., Ferreira, K., Meharg, A. A., & Feldmann, J. (2007a). Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus. Journal of Experimental Botany, 58, 1333–1338. https://doi.org/10.1093/jxb/erl300.

    Article  CAS  Google Scholar 

  • Raab, A., Williams, P. N., Meharg, A., & Feldmann, J. (2007b). Uptake and translocation of inorganic and methylated arsenic species by plants. Environmental Chemistry, 4, 197–203. https://doi.org/10.1071/EN06079.

    Article  CAS  Google Scholar 

  • Rasheed, H., Kay, P., Slack, R., & Gong, Y. Y. (2018). Arsenic species in wheat, raw and cooked rice: Exposure and associated health implications. Science of the Total Environment, 634, 366–373. https://doi.org/10.1016/j.scitotenv.2018.03.339.

    Article  CAS  Google Scholar 

  • Rego, A., Mota, C., Gueifão, S., Ventura, M., Delgado, I., Lopes, J., et al. (2018). Amino acid contents and toxically relevant arsenic of rice varieties consumed in Portugal. Measurement, 113(189–95), 2018. https://doi.org/10.1016/j.measurement.2017.03.025.

    Article  Google Scholar 

  • Sánchez, D., Merlo, J., Haro, R., Acosta, M., & Bernal, G. (2018). Soils from Amazonia chapter 4. In J. Espinosa, G. Bernal, & J. Moreno (Eds.), The soils of Ecuador. Berlin: Springer. https://doi.org/10.1007/978-3-319-25319-0_4.

    Chapter  Google Scholar 

  • Segura, F. R., de Oliveira Souza, J. M., De Paula, E. S., da Cunha Martins, A., Paulelli, A. C. C., Barbosa, F., et al. (2016). Arsenic speciation in Brazilian rice grains organically and traditionally cultivated: Is there any difference in arsenic content? Food Research International, 89, 169–176. https://doi.org/10.1016/j.foodres.2016.07.011.

    Article  CAS  Google Scholar 

  • Segura, F. R., Paulelli, A. C., Braga, G., dos Reis Pedreira Filho, W., Silva, F., & Batista, B. (2018). Promising filamentous native fungi isolated from paddy soils for arsenic mitigation in rice grains cultivated under flooded conditions. Journal of Environmental Chemical Engineering, 6, 3926–3932. https://doi.org/10.1016/j.jece.2018.05.036.

    Article  CAS  Google Scholar 

  • Signes-Pastor, A. J., Carey, M., Carbonell-Barrachina, A. A., Moreno-Jiménez, E., Green, A. J., & Meharg, A. A. (2016). Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian peninsula. Food Chemistry, 202, 356–363. https://doi.org/10.1016/j.foodchem.2016.01.117.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Soil Taxonomy. (2014). Keys to soil taxonomy (12th ed.). Washington: USDA - NRCS.

    Google Scholar 

  • Suriyagoda, L., Ditter, K., & Lambers, H. (2018). Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agriculture, Ecosystems & Environment, 253, 23–37. https://doi.org/10.1016/j.agee.2017.10.017.

    Article  CAS  Google Scholar 

  • Torres-Escribano, S., Leal, M., Vélez, D., & Montoro, R. (2008). Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments. Environmental Science and Technology, 42, 3867–3872.

    CAS  Google Scholar 

  • USFDA. (2013). Analytical results from inorganic arsenic in rice and rice products. Sampling September 2013. Summary table—Inorganic arsenic in rice and rice products includes results from September 2012. U.S. Food and Drug Administration, Washington, DC, USA.

  • Vepraskas, M. J., & Craft, B. (2016). Wetland soils: Genesis, hydrology, landscapes, and classification (2nd ed.). Boca Raton: CRS Press.

    Google Scholar 

  • Wang, Z., & Forsyth, D. (2012). Methods for the determination of arsenic speciation in rice: A review. Encyclopedia of Analytical Chemistry. https://doi.org/10.1002/9780470027318.a9357.

    Article  Google Scholar 

  • WHO. (2018). GEMS/food contaminants database. Geneva: World Health Organization.

    Google Scholar 

  • Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39(15), 5531–5540. https://doi.org/10.1021/es0502324.

    Article  CAS  Google Scholar 

  • Williams, P. N., Raab, A., Feldmann, J., & Meharg, A. A. (2007a). Market basket survey shows elevated levels of as in South Central US processed rice compared to California: Consequences for human dietary exposure. Environmental Science and Technology, 41, 2178–2183. https://doi.org/10.1021/es061489k.

    Article  CAS  Google Scholar 

  • Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., et al. (2007b). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science and Technology, 41, 6854–6859.

    CAS  Google Scholar 

  • Williams, P. N., Zhang, H., Davison, W., Meharg, A. A., Hossain, M., Norton, G. J., et al. (2011). Organic matter—Solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environmental Science and Technology, 45, 6080–6087. https://doi.org/10.1021/es2003765.

    Article  CAS  Google Scholar 

  • Wu, C., Zou, Q., Xue, S. G., Pan, W. S., Yue, X., Hartley, W., et al. (2016). Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Chemosphere, 165, 478–486.

    CAS  Google Scholar 

  • Xu, X. Y., McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science and Technology, 42, 5574–5579. https://doi.org/10.1021/es800324u.

    Article  CAS  Google Scholar 

  • Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., Amachi, S., & Makino, T. (2011). Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 83, 925–932.

    CAS  Google Scholar 

  • Yu, H., Wang, X., Li, F., Li, B., Liu, C., Wang, Q., et al. (2017). Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Environmental Pollution, 224, 136–147. https://doi.org/10.1016/j.envpol.2017.01.072.

    Article  CAS  Google Scholar 

  • Zavala, Y. J., Gerads, R., Gürleyük, H., & Duxbury, J. M. (2008). Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environmental Science and Technology, 42(10), 3861–3866. https://doi.org/10.1021/es702748q.

    Article  CAS  Google Scholar 

  • Zhang, H., & Selim, H. M. (2005). Kinetics of arsenate adsorption-desorption in soils. Environmental Science and Technology, 39, 6101–6108. https://doi.org/10.1021/es050334u.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. The New Phytologist, 181, 777–794.

    CAS  Google Scholar 

  • Zhao, F. J., McGrath, S. P., & Meharg, A. A. (2010). Arsenic as a food-chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology, 61, 535–559.

    CAS  Google Scholar 

  • Zhao, F. J., Zhu, Y. G., & Meharg, A. A. (2013). Methylated arsenic species in rice: Geographical variation origin, and uptake mechanisms. Environmental Science and Technology, 47, 3957–3966. https://doi.org/10.1021/es304295n.

    Article  CAS  Google Scholar 

  • Zhu, Y.-G., Sun, G.-X., Lei, M., Teng, M., Liu, Y.-X., Chen, N.-C., et al. (2008). High percentage inorganic arsenic content of mining impacted and non impacted Chinese rice. Environmental Science and Technology, 42, 5008–5013. https://doi.org/10.1021/es8001103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is part of a research project funded by the Universidad de las Fuerzas Armadas-ESPE through Project 2015-PIC-017, Xunta de Galicia-Consellería de Educación, Universidades e Formación Profesional, Plan Galego IDT, Consolidation of competitive research groups (ref. ED31C2018/12), São Paulo Research Foundation—FAPESP (grant number 2018/04259-2), Cross-Research in Environmental Technologies (CRETUS, AGRUP2015/02, ref. 2018-PG100) and project PIJ15-10 financed by Escuela Politécnica Nacional from Quito-Ecuador. TOF thanks the National Council for Scientific and Technology Development (CNPq, process 305996/2018-5). XLOP is grateful for the financial support from the Proyecto PROMETEO (SENESCYT Ecuador). We thank María José Santiso for assistance with laboratory work and Augusto Pérez Alberti and Esther Sierra Abraín for assistance with preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Otero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 242 kb)

Supplementary material 2 (XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero, X.L., Atiaga, O., Estrella, R. et al. Geographical variations in arsenic contents in rice plants from Latin America and the Iberian Peninsula in relation to soil conditions. Environ Geochem Health 42, 3351–3372 (2020). https://doi.org/10.1007/s10653-020-00581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00581-8

Keywords

Navigation