Skip to main content

Advertisement

Log in

Soil–plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn- and Fe-abandoned mines: microcosm assay

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In Portugal, many abandoned mines are often close to agricultural areas and might be used for plant food cultivation. Soils in the vicinity of two Mn- and Fe-abandoned mines (Ferragudo and Rosalgar, SW of Portugal) were collected to cultivate two different food species (Brassica rapa subsp. pekinensis (Lour.) Hanelt and Origanum vulgare L.). Chemical characterization of the soil–plant system and potential risk of adverse effects for human health posed by plants associated with soil contamination, based on the estimation of hazard quotient (HQ), were assessed in a microcosm assay under greenhouse conditions. In both soils, the average total concentrations of Fe and Mn were above the normal values for soils in the region and their concentration in shoots of both species was very high. Brassica rapa subsp. pekinensis grew better in Ferragudo than in Rosalgar soils, and it behaved as an excluder of Cu, Mn, Fe, S and Zn in both soils. The HQ for Cu, Fe, Mn and Zn in the studied species grown on both soils was lower than unit indicating that its consumption is safe. The high Mn tolerance found in both species might be due in part to the high contents of Fe in the soil available fraction that might contribute to an antagonism effect in the uptake and translocation of Mn. The obtained results emphasize the need of further studies with different food crops before cultivation in the studied soils to assess health risks associated with high metal intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu, M.M., Bech, J., Carvalho, L.C., & Santos, E. (2014a). Potential hazardous elements fluxes from soil to plants and the food chain. In C. Bini, Bech, J. (Ed.), PHEs, environment and human health potentially harmful elements in the environment and the impact on human health (pp. 309–338). Springer, Berlin.

  • Abreu, M. M., Godinho, B., & Magalhães, M. C. F. (2014). Risk assessment of Arbutus unedo L. fruits form plants growing on contaminated soils in the Panasqueira mine area, Portugal. Journal of Soils and Sediments,14, 744–757.

    Google Scholar 

  • Abreu, M. M., Santos, E. S., Ferreira, M., & Magalhães, M. C. F. (2012). Cistus salviifolius a promising species for mine wastes remediation. Journal of Geochemical Exploration,113, 86–93.

    CAS  Google Scholar 

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risk of metals. New York: Springer.

    Google Scholar 

  • Almeida, J.M.C., & Fernandes, C.C. (1948). Jazigos de manganés do Alentejo. Breve estudo das minas da herdade do Ferragudo e da herdade da Felipeja. Lisboa: Ministério da Economia, Direcção Geral de Minas e Serviços Geológicos. Serviço de Fomento Mineiro.

  • Alvarenga, P., Simões, I., Palma, P., Amaral, O., Matos, J., & X., (2014). Field study on the accumulation of trace elements by vegetables produced in the vicinity of abandoned pyrite mines. Science of the Total Environment,470–471, 1233–1242.

    Google Scholar 

  • Árvay, J., Demková, L., Hauptvog, M., Michalko, M., Bajčan, D., Stanovič, R., et al. (2017). Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems. Ecotoxicoly and Environmental Safety,144, 236–244.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrition,3, 643–654.

    CAS  Google Scholar 

  • Baker, A. J. M., Ernst, W. H. O., Antony, V. D. E., Malaisse, F., & Ginocchio, R. (2010). Metallophytes: The unique biological resource, its ecology and conservational status in Europe, Central Africa and Latin America. In L. C. Batty & K. B. Hallberg (Eds.), Ecology of industrial pollution (pp. 7–54). New York: Cambridge University Press.

    Google Scholar 

  • Brady, N. C., & Weil, R. R. (2008). The nature and properties of soil (14th ed.). New Jersey: Pearson Education Ltd.

    Google Scholar 

  • Bu-Olayan, A. H., & Thomas, B. V. (2009). Translocation and bioaccumulation of trace metals in desert plants of Kuwait Governorates. Research Journal of Environmental Science,3, 581–587.

    CAS  Google Scholar 

  • Cesco, S., Neumann, G., Tomasi, N., Pinton, R., & Weisskopf, L. (2010). Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil,329, 1–25.

    CAS  Google Scholar 

  • Chaney, R. L. (1989). Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains. In B. Bar-Yosef, N. J. Barrow, & J. Goldshmid (Eds.), Inorganic contaminants in the Vadose Zone (pp. 140–158). Berlin: Springer.

    Google Scholar 

  • Chao, T. T. (1972). Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Science Society American Journal,36, 762–768.

    Google Scholar 

  • Chen, G., Wang, X., Wang, R., & Liu, G. (2019). Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicology and Environmental Safety,171, 737–745.

    CAS  Google Scholar 

  • Chojnacka, K., Chojnacki, A., Góreckab, H., & Górecki, H. (2005). Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment,337, 175–182.

    CAS  Google Scholar 

  • Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil,245, 35–47.

    CAS  Google Scholar 

  • De Endredy, A. S. (1963). Estimation of free iron oxides in soils and clays by photolytic method. Clay Minerals,5, 209–217.

    Google Scholar 

  • El Hamiani, O., El Khalil, H., Lounate, K., Sirguey, C., Hafidi, M., Bitton, G., et al. (2010). Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. Journal of Hazardous Materials,177, 755–761.

    Google Scholar 

  • El Hamiani, O., El Khalil, H., Sirguey, C., Ouhammou, A., Bitton, G., et al. (2015). Metal concentrations in plants from mining areas in South Morocco: Health risks assessment of consumption of edible and aromatic plants. CLEAN–Soil, Air, Water,43, 313–462.

    Google Scholar 

  • Feng, M. H., Shan, X. Q., Zhang, S. Z., & Wen, B. (2005). A comparison of the rhizosphere-based method with DTPA, EDTA, CaOCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil t barley. Environmental Pollution,137, 231–240.

    CAS  Google Scholar 

  • Gamon, J. A., Peñuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that track diurnal changes in photosynthetic efficiency. Remote Sensing of Environment,41, 35–44.

    Google Scholar 

  • Garbulsky, M. F., & Paruelo, J. M. (2004). Remote sensing of protected areas to derive baseline vegetation functioning characteristics. Journal of Vegetation Science,15, 711–720.

    Google Scholar 

  • Garbulsky, M. F., Peñuelas, J., Gamon, J., Inoue, Y., & Filella, I. (2011). The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sensing of Environment,115, 281–297.

    Google Scholar 

  • Gonzalez-Fernandez, O., Batista, M. J., Abreu, M. M., Queralt, I., & Carvalho, M. L. (2011). Elemental characterization of edible plants and soils in an abandoned mining region: Assessment of environmental risk. X Ray Spectrometry,40, 353–363.

    CAS  Google Scholar 

  • He, B. Y., Ling, L., Zhang, L. Y., Li, M. R., Li, Q. S., Mei, X. Q., et al. (2015). Cultivar specific differences in heavy metal (Cd, Cr, Cu, Pb, and Zn) concentrations in water spinach (Ipomoea aquatic ‘Forsk’) grown on metal-contaminated soil. Plant and Soil,386, 251–262.

    CAS  Google Scholar 

  • Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil,248, 43–59.

    CAS  Google Scholar 

  • Hough, R. L., Breward, N., Young, S. D., Crout, N. M. J., Tye, A. M., Moir, A. M., et al. (2004). Assessing potential risk of heavy metal exposure from consumption of home produced vegetables by urban populations. Environmental Health Perspective,112(2), 215–221.

    CAS  Google Scholar 

  • INIA–LQARS. (2000). Manual de Fertilização das culturas. Lisboa: Laboratório Químico Agrícola Rebelo da Silva.

    Google Scholar 

  • Ji, K., Kim, J., Lee, M., Park, S., Kwon, H. J., Cheong, H.-K., et al. (2013). Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution,178, 322–328.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (1993). Behavioural properties of trace metals in soils. Applied Geochemistry,2, 3–9.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2004). Soil–plant transfer of trace elements: An environmental issue. Geoderma,122, 143–149.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC.

    Google Scholar 

  • Kalis, E. J. J., Temminghoff, E. J. M., Town, R. M., Unsworth, E. R., & Van Riemsdijk, W. H. (2008). Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass. Journal of Environmental Quality,37, 2221–2231.

    CAS  Google Scholar 

  • Kim, S., Kwon, H. J., Cheong, H. K., Choi, K., Jang, J. Y., Jeong, W. C., et al. (2008). Investigation on health effects of an abandoned metal mine. Journal of Korean Medical Science,23, 452–458.

    Google Scholar 

  • Kim, N. S., Sakong, J., Choi, J. W., Hong, Y. S., Moon, J. D., & Lee, B. K. (2012). Blood lead levels of residents living around 350 abandoned metal mines in Korea. Environmental Monitoring and Assessment,184, 4139–4149.

    CAS  Google Scholar 

  • Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology,61, 517–534.

    Google Scholar 

  • Lee, C. W., Choi, J. M., & Park, C. H. (1996). Micronutrient toxicity in seed Geranium (Pelargonium × hortorum Bailey). Journal of American Society of Horticultural Science,121(1), 77–82.

    CAS  Google Scholar 

  • Loutfy, N., Fuerhacker, M., Tundo, P., Raccanelli, S., Dien, A. G., & Ahmed, M. T. (2006). Dietary intake of dioxins and dioxin-like PCBs, due to the consumption of dairy products, fish/seafood and meat from Ismailia city, Egypt. Science of the Total Environment,370, 1–8.

    CAS  Google Scholar 

  • Lucchini, R. G., Albini, E., Benedetti, L., Borghesi, S., Coccaglio, R., Malara, E. C., et al. (2007). High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. American Journal of Industrial Medicine,50(11), 788–800.

    CAS  Google Scholar 

  • Markert, B. (1996). Instrumental element and multi-element analysis of plant samples methods and applications. Chichester: Wiley.

    Google Scholar 

  • Matos, J. X., & Martins, L. P. (2006). Reabilitação Ambiental de Áreas Mineiras do Sector Português da Faixa Piritosa Ibérica: Estado da Arte e Prespectivas Futuras. Boletín Geológico y Minero de España,117, 289–304.

    Google Scholar 

  • Matos, J. X., Martins, L. P., Oliveira, J. T., Pereira, Z., Batista, M. J., & Quental L. (2008). Rota da pirite no sector português da Faixa Piritosa Ibérica, desafios para um desenvolvimento sustentado do turismo geológico e mineiro. In: P. Carrion (Ed.), Rutas Minerales en Iberoamérica. Projecto RUMYS, programa CYTED (pp. 136–155). Equador: Esc. Sup. Politécnica del Litoral.

  • Matos, J. X., & Rosa, C. (2001). Diagnóstico Preliminar de Minas Abandonadas—Área Sul. Relatório Interno IGM.

  • Matos, J. X., Rosa, C., & Pereira, Z. (2013). Geologia e mineralizações da região de Odemira. In P. Prista (Coord.), Livro de Atas do Colóquio Ignorância & Esquecimento (pp. 261–285). Odemira: Edição Câmara Municipal de Odemira.

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology,14, 277–282.

    CAS  Google Scholar 

  • Nabulo, G., Young, S. D., & Black, C. R. (2010). Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Science of the Total Environmental,22, 5338–5351.

    Google Scholar 

  • National Research Council. (2005). Mineral tolerance of animals. Washington: National Academies Press.

    Google Scholar 

  • Neves, M. O., Abreu, M. M., & Figueiredo, V. (2012). Uranium in vegetable foodstuffs: Should inhabitants of Cunha Baixa uranium mine site (Centre-North of Portugal) be concerned? Environmental Geochemistry and Health,34(2), 181–189.

    CAS  Google Scholar 

  • Póvoas, I., & Barral, M. F. (1992). Métodos de análise de solos Serie Ciências Agrárias 10. Lisboa: Comunicações do Instituto de Investigação Científica Tropical.

    Google Scholar 

  • Powers, K. M., Smith-Weller, T., Franklin, G. M., Longstreth, W. T., Swanson, P. D., & Checkoway, H. (2003). Parkinson's disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology,60, 1761–1766.

    CAS  Google Scholar 

  • Rai, V., Sanagala, R., Sinilal, B., Yadav, S., Sarkar, A. K., Dantu, P. K., et al. (2015). Iron availability affects phosphate deficiency mediated responses, and evidence of cross talk with auxin and zinc in Arabidopsis. Plant and Cell Physiology,56, 1107–1123.

    CAS  Google Scholar 

  • Rosa, C., Matos, J., & Pereira, Z. (2013). Geologia e mineralizações da região de Odemira. In P. Prista, (Coord.), Atas do Colóquio Ignorância e Esquecimento (pp. 261–285). Odemira: Município de Odemira.

  • Rossini-Oliva, S., Abreu, M. M., & Leidi, E. O. (2018). A review of hazardous elements tolerance in a metallophyte model species: Erica andevalensis. Geoderma,319, 43–51.

    CAS  Google Scholar 

  • Rossini-Oliva, S., Santos, E. S., & Abreu, M. M. (2019). Accumulation of Mn and Fe in aromatic plant species from the abandoned Rosalgar Mine and their potential risk to human health. Applied Geochemistry,104, 42–50.

    Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resources Technology Satellite-1 Symposium.

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., et al. (2005). FOREGS Geochemical Atlas of Europe, Part 1: Background Information. Geological Survey of Finland, Espoo, Finland: Methodology and Maps.

    Google Scholar 

  • Santos, E. S., Arán, D., Abreu, M. M., & de Varennes, A. (2018). Engineered soils using amendments for in situ rehabilitation of mine lands. In M. N. V. Prasad, P. J. C. Favas, & S. K. Maiti (Eds.), Bio-geotechnologies for mine site rehabilitation (pp. 131–146). Amsterdam: Elsevier.

    Google Scholar 

  • Schwertmann, U. (1964). Differenzierung der eisenoxide des Bodens durch extraktion mit ammoniumoxalate-Lösung: Z. Journal of Plant Nutrition and Soil Science,105(3), 194–202.

    CAS  Google Scholar 

  • Sherzai, A. Z., Tagliati, M., Park, K., Pezeshkian, S., & Sherzai, D. (2016). Micronutrients and risk of Parkinson’s disease: A systematic review. Gerontology & Geriatric Medicine,2, 1–11.

    Google Scholar 

  • Sipter, E., Rózsa, E., Gruiz, K., Tátrai, E., & Morvai, V. (2008). Site-specific risk assessment in contaminated vegetable gardens. Chemosphere,71, 1301–1307.

    CAS  Google Scholar 

  • Soriano-Disla, J. M., Gómez, I., Navarro-Pedreño, J., & Jordán, M. M. (2014). The transfer of heavy metals to barley plants from soils amended with sewage sludge with different heavy metal burdens. Journal of Soils and Sediment,14, 687–696.

    Google Scholar 

  • Srivastava, P. C., & Gupta, U. C. (1996). Trace elements in crop production. Lebanon: Science Publishers.

    Google Scholar 

  • Tongesayi, T., Fedick, P., Lechner, L., Brock, C., Le Beau, A., & Bray, C. (2013). Daily bioaccessible levels of selected essential but toxic heavy metals from the consumption of non-dietary food sources. Food and Chemical Toxicology,62, 142–147.

    CAS  Google Scholar 

  • van Rijn, P. C., van Houten, Y. M., & Sabelis, M. W. (2002). How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology,83(10), 2664–2679.

    Google Scholar 

  • USEPA. (2000). Supplementary guidance for conducting health risk assessment of chemical mixtures. EPA/630/R-00/002. Retrieved July, 2013 from https://www.epa.gov/raf/publications/pdfs/CHEM_MIX_08_2001.PDF.

  • USEPA. (2002). Preliminary remediation goals. Retrieved December, 2006 from https://www.epa.gov/region09/waste/sfind/prg. Accessed December 2006.

  • USEPA, (2011). USEPA Regional Screening Level (RSL) summary table: November 2011. Retrieved January, 2014 from https://www.epa.gov/regshwmd/risk/human/Index.htm.

  • USEPA. (2012). EPA region III risk-based concentration (RBC) table 2008 region III, 1650 Arch Street, Philadelphia, Pennsylvania 19103.

  • Ye, Z. H., Shu, W. S., Zhang, Z. Q., Lan, C. Y., & Wong, M. H. (2002). Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere,47, 1103–1111.

    CAS  Google Scholar 

  • Zheng, L., Huang, F., Narsai, R., Wu, J., Giraud, E., He, F., et al. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology,151, 262–274.

    CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407, 1551–1561.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rossini-Oliva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossini-Oliva, S., Abreu, M.M., Santos, E.S. et al. Soil–plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn- and Fe-abandoned mines: microcosm assay. Environ Geochem Health 42, 4073–4086 (2020). https://doi.org/10.1007/s10653-020-00514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00514-5

Keywords

Navigation