Skip to main content

Advertisement

Log in

Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study enhances the understanding of the particulate matters (PM2.5 and PM10) and their physical and chemical behavior over the Taj Mahal, Agra, in North-Central India. The mass concentration was determined, and the shape and size of the particles and chemical characterizations have been carried out using SEM–EDX. The high level and significant variation of PM10 (162.2 µg m−3) and PM2.5 (83.9 µg m−3) were observed. The exceedance factor of the present study region is in critical and moderate condition. Morphological characterization reveals the particles of different shapes and sizes, while elemental analysis shows the presence of Si, Al, Fe, Ca, K, Cl, Mg, Na, Cu, and Zn. The dominance of Si indicated the contribution of natural sources, i.e., soil over this region. Three significant sources, viz. soil/road paved dust/vegetative emissions, vehicular/industrial emissions, and intermingling of dust and combustion particles, have been identified using principal component analysis over North-Central India. Health risk analysis of particulate matter identified carcinogenic and non-carcinogenic metals in the present study, which comes in contact with human beings during inhalation. The non-carcinogenic risk was much higher than the acceptable level. The high carcinogenic risks were found in Zn in PM10 and Cu in PM2.5 for both children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdul-Wahab, S. A. (2006). Indoor and outdoor relationships of atmospheric particulates in Oman. Indoor and Built Environment,15(3), 247–255.

    CAS  Google Scholar 

  • Adgate, J. L., et al. (2007). Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5. Science of the Total Environment,386(1), 21–32.

    CAS  Google Scholar 

  • Al-Khashman, O. A. (2007). The investigation of metal concentrations in street dust samples in Aqaba City, Jordan. Environmental Geochemistry and Health,29(3), 197–207.

    CAS  Google Scholar 

  • Anake, W., Ana, G. R. E. E., Williams, A. B., Ahmadu, O. H. F., & Benson, N. U. (2017). Chemical speciation and health risk assessment of fine particulate bound trace metals emitted from Ota Industrial Estate, Nigeria. Earth and Environmental Science,68, 012005.

    Google Scholar 

  • Badrinath, K. V. S., Kiran, T. R., & Prasad, V. K. (2006). Agriculture crop residue burning in the Indo-Gangetic Plains a study using IRS-P6 AWiFS satellite data. Current Science,91(8), 1085–1089.

    Google Scholar 

  • Balachandran, S., Meena, B. R., & Khillare, P. K. (2000). Particle size distribution and its elemental composition in the ambient air of Delhi. Environment International,26, 49–54.

    CAS  Google Scholar 

  • Barman, S. C., Singh, R., Negi, M. P. S., & Bhargava, S. K. (2008). Fine particles (PM2.5) in residential areas of Lucknow city and factors influencing the concentration. Clean – Soil, Air, Water,36, 111–117.

    CAS  Google Scholar 

  • Basha, S., et al. (2010). Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmospheric Research,97, 257–265.

    CAS  Google Scholar 

  • Balasubramanian, R., Qian, W. B., Decesari, S., Facchini, M. C., & Fuzzi, S. (2003). Comprehensive characterization of PM2.5 aerosols in Singapore. Journal of Geophysical Research, 108, 4523.

    Google Scholar 

  • Bilos, C., Colombo, J. C., Skorupka, C. N., & Presa, M. J. R. (2001). Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environmental Pollution, 111, 149–158.

    CAS  Google Scholar 

  • Cao, S. Z., et al. (2015). Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China. Environmental Pollution, 200, 16–23.

    CAS  Google Scholar 

  • Chaudhari, P. R., Gajghate, D. G., & Singh, D. K. (2015). Studies on respirable particulate matter and heavy metal pollution of ambient air in Delhi. American Journal of Engineering Research,4(12), 45–57.

    CAS  Google Scholar 

  • Chen, P., Kang, S., Bai, J., Sillanpää, M., & Li, C. (2015). Yak dung combustion aerosols in the Tibetan Plateau: Chemical characteristics and influence on the local atmospheric environment. Atmospheric Research,156, 58–66.

    CAS  Google Scholar 

  • Cheng, X., Huang, Y., Zhang, S., Ni, S., & Long, Z. (2018). Characteristics, sources, and health risk assessment of trace elements in PM10 at an urban site in Chengdu, Southwest China. Aerosol and Air Quality Research,18, 357–370.

    CAS  Google Scholar 

  • Cohen, A. J., et al. (2017). Estimates and twenty years trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet,389, 1907–1918.

    Google Scholar 

  • Craig, L., et al. (2008). Air pollution and public health: A guidance document for risk managers. Journal of Toxicology and Environmental Health A,71(9–10), 588–698.

    CAS  Google Scholar 

  • Deka, P., & Hoque, R. R. (2015). Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia. Atmospheric Environment,108, 125–132.

    CAS  Google Scholar 

  • Deng, X., et al. (2014). Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis,19, 1099–1112.

    CAS  Google Scholar 

  • Dockery, D. W., et al. (1993). An Association between air pollution and mortality in six U.S. cities. The New England Journal of Medicine,329, 1753–1759.

    CAS  Google Scholar 

  • Duan, J., & Tan, J. (2013). Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmospheric Environment, 74, 93–101.

    CAS  Google Scholar 

  • Dubey, B., Kumar, A., & Singh, P. G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand, India. Atmospheric Pollution Research, 3, 238–246.

    CAS  Google Scholar 

  • Feng, J. L., Guo, Z. G., Chan, C. K., & Fang, M. (2007). Properties of organic matter in PM2.5 at Changdao Island, China—A rural site in the transport path of the Asian continental outflow. Atmospheric Environment,41, 1924–1935.

    CAS  Google Scholar 

  • Forsberg, B., Hansson, H. C., Johansson, C., Aureskoug, H., Persson, K., & Järvholm, B. (2005). Comparative health impact assessment of local and regional particulate air pollutants in Scandinavia. Ambio,34, 11–19.

    Google Scholar 

  • Fung, Y. S., & Wong, L. W. Y. (1995). Apportionment of air pollution sources by receptor models in Hong Kong. Atmospheric Environment, 29, 2041–2048.

    CAS  Google Scholar 

  • Fuzzi, S., et al. (2015). Particulate matter, air quality and climate: Lessons learned and future needs. Atmospheric Chemistry and Physics,15, 8217–8299.

    CAS  Google Scholar 

  • Ginsberg, G., & Geva, H. (2014). The burden of smoking in Israel-attributable mortality and costs. Israel Journal of Health Policy Research,3, 28.

    Google Scholar 

  • Gogikar, P., & Tyagi, B. (2016). Assessment of particulate matter variation during 2011–2015 over a tropical station Agra, India. Atmospheric Environment,147, 11–21.

    CAS  Google Scholar 

  • Gummeneni, S., Yusup, Y. B., Chavali, M., & Samadi, S. Z. (2011). Source apportionment of particulate matter in the ambient air of Hyderabad City, India. Atmospheric Research,101(3), 752–764.

    CAS  Google Scholar 

  • Gupta, P., Jangid, A., & Kumar, R. (2019). Measurement of PM10, PM2.5 and black carbon and assessment of their health effects in Agra: A semiarid region of India. Proceedings of the Indian National Science Academy,85(3), 667–679.

    Google Scholar 

  • Gupta, P., Singh, S. P., Jangid, A., & Kumar, R. (2017). Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence. Advances in Atmospheric Sciences,34(9), 1082–1094.

    CAS  Google Scholar 

  • Gwynn, C. R., Burnett, R. T., & Thurston, G. D. (2000). A time-series analysis of acidic particulate matter and daily mortality and morbidity in the Buffalo, New York region. Environmental Health Perspectives,108, 125–133.

    CAS  Google Scholar 

  • Hoa, K. F., et al. (2003). Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment,37, 31–39.

    Google Scholar 

  • Hu, M., He, L., Zhang, Y., Wang, M., Kim, Y. P., & Moon, K. C. (2002). Seasonal variation of ionic species in fine particles at Qingdao. China Atmospheric Environment,36, 5853–5859.

    CAS  Google Scholar 

  • Huang, W., et al. (2009). Visibility, air quality and daily mortality in Shanghai, China. Science of the Total Environment,407, 3295–3300.

    CAS  Google Scholar 

  • Husain, L., et al. (2007). Characterization of carbonaceous aerosols in urban air. Atmospheric Environment,41, 6872–6883.

    CAS  Google Scholar 

  • Iqbal, M. A., et al. (2014). Comparison of ozone pollution levels at various sites in Seoul, a megacity in Northeast Asia. Atmospheric Research,138, 330–345.

    CAS  Google Scholar 

  • Karar, K., Gupta, A. K., Kumar, A., & Biswas, A. K. (2006a). Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese, and iron in PM10 at two sites of Kolkata, India. Environmental Monitoring and Assessment,120, 347–360.

    CAS  Google Scholar 

  • Karar, K., Gupta, A. K., Kumar, A., Biswas, K. A., & Devotta, S. (2006b). Statistical interpretation of weekday/weekend differences of ambient particulate matter, vehicular traffic and meteorological parameters in an urban region of Kolkata, India. Indoor and Built Environment,15, 235–245.

    CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health,37, 631–649.

    CAS  Google Scholar 

  • Khan, F., Hirano, K., & Masunaga, S. (2010). Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmospheric Environment, 44(21–22), 2646–2657.

    CAS  Google Scholar 

  • Kothari, C. R. (2004). Research methodology: Methods and techniques (Revised 2 ed.). New Delhi: New Age International Publishers.

    Google Scholar 

  • Kulshrestha, U. C., et al. (1998). Chemical composition of size differentiated aerosol of a suburban site in a semi-arid tract of India. Journal of Atmospheric Chemistry,29, 109–118.

    CAS  Google Scholar 

  • Kulshrestha, U. C., et al. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment,407, 6196–6204.

    CAS  Google Scholar 

  • Kumar, R., & Kumari, M. K. (2015). Aerosols and trace gases characterization over Indo-Gangetic plain in semiarid region. Urban Climate,12, 11–20.

    Google Scholar 

  • Kumar, R., Srivastava, S. S., & Kumari, K. M. (2007). Characteristics of aerosols over suburban and urban site of semi-arid region in India: Seasonal and spatial variations. Aerosol and Air Quality Research,7, 531–549.

    CAS  Google Scholar 

  • Kurt-Karakus, P. B., Bidleman, T. F., Muir, D. C. G., Cagampan, S. J., Struger, J., Sverko, E., et al. (2008). Chiral current-use herbicides in Ontario streams. Environmental Science and Technology,42, 8452–8458.

    CAS  Google Scholar 

  • Laschober, C., et al. (2004). Particulate emissions from on-road vehicles in the Kaisermuhlen-tunnel (Vienna, Austria). Atmospheric Environment,38, 2187–2195.

    CAS  Google Scholar 

  • Latha, P., Venkatesan, L., & Perdita, H. (2016). A descriptive study to assess the impact of air pollution on birth weight of newborns at selected maternity corporation centers, Chennai. International Journal of Applied Research,2(3), 536–538.

    Google Scholar 

  • Latif, M. T., Othman, M. R., Kim, C. L., Murayadi, S. A., & Sahaimi, K. N. A. (2009). Composition of household dust in semi-urban areas in Malaysia. Indoor and Built Environment,18, 155–161.

    CAS  Google Scholar 

  • Lee, J. T., Son, J. Y., & Cho, Y. S. (2007). The adverse effects of fine particle air pollution on respiratory function in the elderly. Science of the Total Environment,385, 28–36.

    CAS  Google Scholar 

  • Li, C., Kang, S., Chen, P., Zhang, Q., & Fang, G. C. (2012). Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China. Environmental Science and Pollution Research,19(5), 1620–1628.

    CAS  Google Scholar 

  • Li, X., Poon, C. S., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry,16(11), 1361–1368.

    CAS  Google Scholar 

  • Li, W., et al. (2010). Size, composition, and mixing state of individual aerosol particles in a South China coastal city. Journal of Environmental Sciences,22, 561–569.

    CAS  Google Scholar 

  • Limbeck, A., Handler, M., Puls, C., Zbiral, J., Bauer, H., & Puxbaum, H. (2009). Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmospheric Environment, 43, 530–538.

    CAS  Google Scholar 

  • Liu, K., Shang, Q., & Wan, C. (2018). Sources and health risks of heavy metals in PM2.5 in a campus in a typical suburb area of Taiyuan, North China. Atmosphere,9, 46. https://doi.org/10.3390/atmos9020046.

    Article  CAS  Google Scholar 

  • Liu, L., et al. (2015). Effects of ambient coarse, fine, and ultrafine particles and their biological constituents on systemic biomarkers: A controlled human exposure study. Environmental Health Perspectives,123, 534–540.

    CAS  Google Scholar 

  • Lu, S., et al. (2011). Physicochemical characterization and cytotoxicity of ambient coarse, fine and ultrafine particulate matters in Shanghai atmosphere. Atmospheric Environment,45, 736–744.

    CAS  Google Scholar 

  • Madany, I. M., Akhter, M. S., & Al Jowder, O. A. (1994). The correlations between heavy metals in residential indoor dust and outdoor street dust in Bahrain. Environment International,20(4), 483–492.

    CAS  Google Scholar 

  • Manno, E., Varrica, D., & Dongarra, G. (2006). Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmospheric Environment,40(30), 5929–5941.

    CAS  Google Scholar 

  • Mannucci, P. M., & Franchini, M. (2017). Health effects of ambient air pollution in developing countries. International Journal of Environmental Research and Public Health,14, 1048.

    Google Scholar 

  • Mishra, S., Tripathi, R. D., Srivastava, S., Dwivedi, S., Trivedi, P. K., Dhankher, O. P., et al. (2009). Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresource Technology,100, 2155–2161.

    CAS  Google Scholar 

  • Mohanraj, R., Azeez, P. A., & Priscilla, T. (2004). Heavy metals in airborne particulate matter of urban Coimbatore. Archives of Environmental Contamination and Toxicology,47, 162–167.

    CAS  Google Scholar 

  • Molnár, P., Johannesson, S., Boman, J., Barregård, L., & Sällsten, G. (2006). Personal exposures and indoor, residential outdoor, and urban background levels of fine particle trace elements in the general population. Journal of Environmental Monitoring,8(5), 543–551.

    Google Scholar 

  • NAAQS. (2012). National Ambient Air Quality Status and Trends. CPCB, Ministry of Environment & Forests.

  • Nair, V. S., et al. (2007). Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. Journal Geophysical Research,112, D13205. https://doi.org/10.1029/2006JD008099.

    Article  CAS  Google Scholar 

  • Needleman, H. (2004). Lead poisoning. Annual Review of Medicine,55, 209–222.

    CAS  Google Scholar 

  • Ning, Z., & Sioutas, C. (2010). Atmospheric processes influencing aerosols generated by combustion and the inference of their impact on public exposure: A review. Aerosol and Air Quality Research,10, 43–58.

    CAS  Google Scholar 

  • Pachauri, T., et al. (2013). SEM–EDX characterization of individual coarse particles in Agra, India. Aerosol and Air Quality Research,13, 523–536.

    CAS  Google Scholar 

  • Pal, R., Mahima, Gupta, A., Singh, C., Tripathi, A., & Singh, R. B. (2014). The effects of fireworks on ambient air and possible impact on cardiac health, during Deepawali festival in North India. World Heart Journal,5(1), 21–32.

    Google Scholar 

  • Pandey, P., Khan, A.H., Verma, A.K., Singh, K.A., Mathur, N., Kisku, G.C., & Barman, S. C. (2012). Seasonal trends of PM2.5 and PM10 in ambient air and their correlation in ambient air of Lucknow City, India. Bulletin of Environmental Contamination and Toxicology, 88, 265–270.

    CAS  Google Scholar 

  • Parmar, R. S., Satsangi, G. S., Kumari, K. M., Lakhani, A., Srivastava, S. S., & Prakash, S. (2001). Study of the size distribution of atmospheric aerosols at Agra. Atmospheric Environment,35, 693–702.

    CAS  Google Scholar 

  • Pastuszka, J. S., Rogula-Kozłowska, W., & Zajusz-Zubek, E. (2010). Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, upper Silesia, Poland, during the smog episodes. Environmental Monitoring Assessment, 168(1), 613–627.

    CAS  Google Scholar 

  • Pekey, B., Bozkurt, Z. B., Pekey, H., Dogan, G., Zararsiz, A., Efe, N., et al. (2010). Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air,20, 112–125.

    CAS  Google Scholar 

  • Pipal, A. S., Kulshrestha, A., & Taneja, A. (2011). Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in North Central India. Atmospheric Environment,45, 3621–3630.

    CAS  Google Scholar 

  • Pipal, A. S., et al. (2014). Day and night variability of atmospheric organic and elemental carbon during winter of 2011–12 in Agra, India. Sustainable Environment Research,24(2), 107–116.

    CAS  Google Scholar 

  • Prieditis, H., & Adamson, I. Y. R. (2002). Comparative pulmonary toxicity of various soluble metals found in urban particulate dusts. Experimental Lung Research, 28, 563–576.

    CAS  Google Scholar 

  • Querol, X. (2007). Atmospheric particulate matter in Spain: Levels, composition and source origin. In EMEP particulate matter assessment report, EMEP/CCCReport 8/2007. Kjeller: Norwegian Institute for Air Research.

  • Querol, X., Alastuey, A., Rodríguez, S., Plana, F., Mantilla, E., & Ruiz, C. R. (2001). Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmospheric Environment, 35, 845–858.

    CAS  Google Scholar 

  • Raghunath, R., Tripathi, R. M., Kumar, A. V., Sathe, A. P., Khandekar, R. N., & Nambi, K. S. (1999). Assessment of Pb, Cd, Cu, and Zn exposures of 6- to 10-year-old children in Mumbai. Environmental Research,80(3), 215–221.

    CAS  Google Scholar 

  • Ragosta, M., Caggiano, R., Emilio, M. D., & Macchiato, M. (2002). Source origin and parameters influencing levels of heavy metals in TSP, in an industrial background area of southern Italy. Atmospheric Environment, 36, 3071–3087.

    CAS  Google Scholar 

  • Rajput, P., Sarin, M., & Kundu, S. S. (2013). Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE–Himalaya: Abundances and chemical characteristics. Atmospheric Pollution Research,4, 214–221.

    CAS  Google Scholar 

  • Rashed, M. N. (2008). Total and extractable heavy metals in indoor, outdoor and street dust from Aswan City, Egypt. Clean,36(10–11), 850–857.

    CAS  Google Scholar 

  • Rasmussen, P. E., Levesque, M. C., Gardner, H. D., Jones-Otazo, H., & Petrovic, S. (2013). Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Science of the Total Environment,443, 520–529.

    CAS  Google Scholar 

  • Reid, J. S., et al. (2005). A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics,5, 799–825.

    CAS  Google Scholar 

  • Romanazzi, V., Casazza, M., Malandrino, M., Maurino, V., Piano, A., Schilirò, T., et al. (2014). PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino. Chemosphere,112, 210–216.

    CAS  Google Scholar 

  • Safai, P. D., et al. (1993). Mass size distribution and chemical composition of aerosols at the Slient Valley India. Indian Journal of Radio and Space Physics,22, 56–61.

    Google Scholar 

  • Sarkar, S., Khillare, P. S., Jyethi, D. S., Hasan, A., & Parween, M. (2010). Chemical speciation of respirable suspended particulate matter during a major firework festival in India. Journal of Hazardous Materials,184(1–3), 321–330.

    CAS  Google Scholar 

  • Satsangi, P. G., et al. (2014). Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in silico approach in indoor environment of India. Atmospheric Environment,92, 384–393.

    CAS  Google Scholar 

  • Schaumloffel, D. (2012). Nickel species; analysis and toxic effects. Journal of Trace Elements in Medicine and Biology,26(1), 1–6.

    Google Scholar 

  • School of Planning and Architecture (SPA), New Delhi. (2018). Taj Trapezium zone preparation of vision documents. First draft report, Volume I. Department of Tourism, Government of Uttar Pradesh.

  • Sharma, M., & Maloo, S. (2005). Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the City of Kanpur, India. Atmospheric Environment,39, 6015–6026.

    CAS  Google Scholar 

  • Shrey, K., Suchit, A., Deepika, D., Shruti, K., & Vibha, R. (2011). Air pollutants: The key stages in the pathway towards the development of cardiovascular disorders. Environmental Toxicology and Pharmacology,31, 1–9.

    CAS  Google Scholar 

  • Singh, G., & Sharma, P. K. (1992). A study of spatial-distribution of air-pollutants in some coal-mining areas of Raniganj coalfield, India. Environment International, 18, 191–200.

    CAS  Google Scholar 

  • Singh, R., Gupta, P., Jangid, A., Sharma, A., & Kumar, R. (2019). A one year study on assessment of fractionated aerosol at a semiarid region over Indo-Gangetic basin. Clean – Soil Air, Water,47, 1–10.

    Google Scholar 

  • Slezakova, K., Morais, S., & Pereira, M. C. (2014). Trace metals in size-fractionated particulate matter in a Portuguese hospital: Exposure risks assessment and comparisons with other countries. Environmental Science and Pollution Research International,21, 604–620.

    Google Scholar 

  • Spindler, G., Muller, K., Bruggemann, E., Gnauk, T., & Herrmann, H. (2004). Long term size segregated characterization of PM10, PM2.5 and PM1 at the IfT research station Melpitz downwind of Leipzig (Germany) using high and low volume filter samplers. Atmospheric Environment,38(31), 5333–5347.

    CAS  Google Scholar 

  • Srivastava, A. K., Dey, S., & Tripathi, S. N. (2012). Chapter 3: Aerosol characteristics over the Indo-Gangetic Basin: Implications to regional climate. In H. Abdul-Razzak (Ed.), Atmospheric aerosols. Regional characteristics-chemistry and physics. London: Intech.

    Google Scholar 

  • Suzuki, K. (2006). Characterization of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM–EDX and laser ablation ICP-MS. Atmospheric Environment,40(14), 2626–2634.

    CAS  Google Scholar 

  • Taneja, A., Saini, R., & Masih, A. (2008). Indoor air quality of houses located in the urban environment of Agra, India. Annals of the New York Academy of Sciences,1140, 228–245.

    CAS  Google Scholar 

  • Tiwari, S., et al. (2010). Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. Journal of Atmospheric Chemistry,62, 3193–3209.

    Google Scholar 

  • Tiwari, S., et al. (2012). Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: Characterization, sources and temporal variability. Natural Hazards,65, 1745–1764.

    Google Scholar 

  • Tiwari, S., et al. (2013). Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125–126, 50–62.

  • Tovalin-Ahumada, H., Whitehead, L., & Blanco, S. (2007). Personal exposure to PM25 and element composition—A comparison between outdoor and indoor workers from two Mexican cities. Atmospheric Environment,41(35), 7401–7413.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (2009). Risk assessment guidance for superfund: Volume I-human health evaluation manual (Part F, supplemental guidance for inhalation risk assessment). Washington D.C.

  • U.S. Environmental Protection Agency (USEPA). (2011). Risk assessment guidance for superfund. In: Part A: Human health evaluation manual; Part E, supplemental guidance for dermal risk assessment; Part F, supplemental guidance for inhalation risk assessment (Vol. I).

  • U.S. Environmental Protection Agency (USEPA). (2014). Human health evaluation manual, supplemental guidance: Update of standard default exposure factors, OSWER Directive 9200.1-120, February 6, 2014, U.S. Environmental Protection Agency, Washington D.C., 20460.

  • Wang, J., et al. (2010). The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmospheric Chemistry and Physics,10, 7267–7283.

    CAS  Google Scholar 

  • Wang, W. (2014). One-year aerosol characterization study for PM2.5 and PM10 in Beijing. Atmospheric Pollution Research,5, 554–562.

    Google Scholar 

  • Wang, X., et al. (2018). Spatiotemporal characteristics and health risk assessment of heavy metals in PM25 in Zhejiang Province. International Journal of Environmental Research and Public Health,15, 583. https://doi.org/10.3390/ijerph15040583.

    Article  CAS  Google Scholar 

  • World Health Organization. (2007). Global estimates of the burden of diseases caused by environmental and occupational health risks. http://www.who.int/quantifying_ehimpacts/global/urbair/en/index.html.

  • Yadav, R., et al. (2014). Temporal variation of particulate matter (PM) and potential sources at an urban site of Udaipur in Western India. Aerosol and Air Quality Research,14, 1613–1629.

    CAS  Google Scholar 

  • Yang, Q., Chen, H., & Li, B. (2015). Source identification and health risk assessment of metals in indoor dust in the vicinity of Phosphorus mining, Guizhou Province, China. Archives of Environmental Contamination and Toxicology,68(1), 20–30.

    CAS  Google Scholar 

  • Zmijková, D., Koliba, M., & Raclavský, K. (2018). Human health risk assessment of heavy metals bound on particulate matter. Journal of the Polish Mineral Engineering Society. https://doi.org/10.29227/IM-2018-01-15.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Sahab Dass, Head, Department of Chemistry, Faculty of Science, and Dr. B.B. Rao, Principal, Technical College, D.E.I (Deemed University), Dayalbagh, for providing necessary facilities and kind encouragement. We gratefully acknowledge Dr. M. Shyama Prasad and Mr. Vijay Khedekar, National Institute of Oceanography, Goa, for SEM–EDX analysis. The financial assistance from DST (Project Number: SR/FTP/ES-25/2011), Government of India, and ARFI, ISRO-GBP are gratefully acknowledged. Mr. Hazur Saran is appreciated for sampling assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Satsangi, M., Satsangi, G.P. et al. Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis. Environ Geochem Health 42, 2081–2099 (2020). https://doi.org/10.1007/s10653-019-00461-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00461-w

Keywords

Navigation