Skip to main content

Advertisement

Log in

The spatial relationship between human activities and C, N, P, S in soil based on landscape geochemical interpretation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The development and formation of chemical elements in soil are affected not only by parent material, climate, biology, and topology factors, but also by human activities. As the main elements supporting life on earth system, the C, N, P, S cycles in soil have been altered by human activity through land-use change, agricultural intensification, and use of fossil fuels. The present study attempts to analyze whether and how a connection can be made between macroscopical control and microcosmic analysis, to estimate the impacts of human activities on C, N, P, S elements in soil, and to determine a way to describe the spatial relationship between C, N, P, S in soil and human activities, by means of landscape geochemical theories and methods. In addition, the disturbances of human activities on C, N, P, S are explored through the analysis of the spatial relationship between human disturbed landscapes and element anomalies, thereby determining the diversified rules of the effects. The study results show that the rules of different landscapes influencing C, N, P, S elements are diversified, and that the C element is closely related to city landscapes; furthermore, the elements N, P, and S are shown to be closely related to river landscapes; the relationships between mine landscapes and the elements C, N, P, S are apparent; the relationships between the elements C, N, P, S and road landscapes are quite close, which shows that road landscapes have significant effects on these elements. Therefore, the conclusion is drawn that the response mechanism analysis of human disturbance and soil chemical element aggregation is feasible, based on the landscape geochemical theories and methods. The spatial information techniques, such as remote sensing and geographic information systems, are effective for research on soil element migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Adamczyk, B., Kilpeläinen, P., Kitunen, V., & Smolander, A. (2014). Potential activities of enzymes involved in N, C, P and S cycling in boreal forest soil under different tree species. Pedobiologia, 57, 97–102.

    Article  Google Scholar 

  • Alexakis, D., & Gamvroula, D. (2014). Arsenic, chromium, and other potentially toxic elements in the rocks and sediments of Oropos-Kalamos basin, Attica, Greece. Applied and Environmental Soil Science, 2014, 1–8.

    Article  Google Scholar 

  • Bai, J. H., Cui, B. S., Chen, B., Zhang, K. J., Deng, W., Gao, H. F., & Xiao, R. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222, 301–306.

    Article  CAS  Google Scholar 

  • Bai, J. H., Gao, H. F., Xiao, R., Wang, J. J., & Huang, C. (2012). A review of soil nitrogen mineralization in coastal wetlands: Issues and methods. Clean-Soil, Air, Water, 40(10), 1099–1105.

    Article  CAS  Google Scholar 

  • Bai, J. H., Xiao, R., Ye, X. F., Yan, D. H., Gao, H. F., & Wang, J. J. (2013). Ammonium transport simulation in horizontal soil columns from a natural inland alkaline wetland. Clean-Soil, Air, Water, 41(5), 473–477.

    Article  CAS  Google Scholar 

  • Bastami, K. D., Bagheri, H., Haghparast, S., Soltani, F., Hamzehpoor, A., & Bastami, M. D. (2012). Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Marine Pollution Bulletin, 64(12), 2877–2884.

    Article  CAS  Google Scholar 

  • Bejaranoa, M., Etcheversb, J. D., Ruíz-Suárezc, G., & Campo, J. (2014). The effects of increased N input on soil C and N dynamics in seasonally dry tropical forests: An experimental approach. Applied Soil Ecology, 73, 105–115.

    Article  Google Scholar 

  • Bilieerman, A.И. (1958). An introduction to landscape geochemistry (trans: Chen, F. K., Wang, E. Y., & Chen, J. S.). China: Geological Press House.

  • Caravaca, F., Masciandaro, G., & Ceccanti, B. (2002). Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil and Tillage Research, 68(1), 23–30.

    Article  Google Scholar 

  • Carpenter, S., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Non-point pollution of surface waters with phosphorus and nitrogen. Issues Ecological, 3, 1–12.

    Google Scholar 

  • Cevik, F., Goksu, M. Z. L., & Derici, O. B. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1–4), 309–317.

    Article  CAS  Google Scholar 

  • Cisneros, R., Bytnerowicz, A., Schweizer, D., Zhong, S., Traina, S., & Bennett, D. H. (2010). Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California. Environmental Pollution, 158(10), 3261–3271.

    Article  CAS  Google Scholar 

  • Comero, S., Servida, D., Capitani, L. D., & Gawlik, B. M. (2012). Geochemical characterization of an abandoned mine site: A combined positive matrix factorization and GIS approach compared with principal component analysis. Journal of Geochemical Exploration, 118, 30–37.

    Article  CAS  Google Scholar 

  • Cuadrado, D. G., & Perillo, G. M. E. (1997). Principal component analysis applied to geomorphologic evolution. Estuarine Coastal Shelf Science, 44(4), 411–419.

    Article  Google Scholar 

  • Dankoub, Z., Ayoubi, S., Khademi, H., & Lu, S. G. (2012). Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere, 22(1), 33–47.

    Article  CAS  Google Scholar 

  • de Miguel, E., Mingot, J., Chacón, E., & Charlesworth, S. (2012). The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health, 34(6), 677–687.

    Article  CAS  Google Scholar 

  • Eze, P. N., Udeigwe, T. K., & Stietiya, M. H. (2010). Distribution and potential source evaluation of heavy metals in prominent soils of Accra Plains, Ghana. Geoderma, 156(3–4), 357–362.

    Article  CAS  Google Scholar 

  • Fraser, M., Surette, C., & Vaillancourt, C. (2011). Spatial and temporal distribution of heavy metal concentrations in mussels (Mytilus edulis) from the Baie des Chaleurs, New Brunswick, Canada. Marine Pollution Bulletin, 62(6), 1345–1351.

    Article  CAS  Google Scholar 

  • Gao, H. F., Bai, J. H., He, X. H., Zhao, Q. Q., Lu, Q. Q., & Wang, J. J. (2014). High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PLoS One, 9(4), e95011.

    Article  Google Scholar 

  • Gonza´lez-Cha´vez, M. C. A., Aitkenhead-Peterson, J. A., Gentry, T. J., Zuberer, D., Hons, F., & Loeppert, R. (2010). Soil microbial community, C, N, and P responses to long-term tillage and crop rotation. Soil and Tillage Research, 106, 285–293.

    Article  Google Scholar 

  • Harrison-Kirk, T., Beare, M. H., Meenken, E. D., & Condron, L. M. (2014). Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralisation. Soil Biology and Biochemistry, 74, 50–60.

    Article  CAS  Google Scholar 

  • Herna´ndez, O. F., & Dendooven, L. (2006). Dynamics of C, N and P in soil amended with biosolids from a pharmaceutical industry producing cephalosporines or third generation antibiotics: A laboratory study. Bioresource Technology, 97, 1563–1571.

    Article  Google Scholar 

  • Huang, L. B., Bai, J. H., Xiao, R., Shi, J. B., & Gao, H. F. (2014). The soil nitrogen dynamics in an inland salt marsh as affected by various experimental water levels. Hydrological Processes, 28(17), 4708–4717.

    Article  CAS  Google Scholar 

  • Kelepertsis, A., Alexakis, D., & Kita, I. (2001). Environmental geochemistry of soils and waters of Susaki area, Korinthos, Greece. Environmental Geochemistry and Health, 23, 117–135.

    Article  CAS  Google Scholar 

  • Lescot, J. M., Bordenave, P., Petit, K., & Leccia, O. (2013). A spatially-distributed cost-effectiveness analysis framework for controlling water pollution. Environmental Modelling and Software, 41, 107–122.

    Article  Google Scholar 

  • Li, Q. L. (2010). Study on characteristics of heavy metals in soil and crops in the regional ecological system- taking Chongqing as an example. China: China Environmental Science Press.

    Google Scholar 

  • Li, Q. M., & Cheng, Q. M. (2006). Visual anomaly: A GIS-based multifractal method for geochemical and geophysical anomaly separation in Walsh domain. Computers and Geosciences, 32(5), 663–672.

    Article  CAS  Google Scholar 

  • Li, Z. P., Liu, M., Wu, X. C., Han, F. X., & Zhang, T. L. (2010). Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil and Tillage Research, 106, 268–274.

    Article  Google Scholar 

  • Lin, Y. P., Cheng, B. Y., Chu, H. J., Chang, T. K., & Yu, H. L. (2011). Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods. Geoderma, 163(3–4), 275–282.

    Article  CAS  Google Scholar 

  • Liu, Y.G. (2007). Studies in landscape geochemistry based on GIS technology—A case study in economic region of Chengdu. Master thesis, Chengdu University of Technology, Chengdu, China.

  • Liu, P. P., Bai, J. H., Ding, Q. Y., Shao, H. B., Gao, H. F., & Xiao, R. (2012). Effects of water level and salinity on TN and TP contents in wetland soils of the Yellow River Delta, China. Clean-Soil, Air, Water, 40(10), 1118–1124.

    Article  CAS  Google Scholar 

  • Macedo, M. O., Resende, A. S., Garcia, P. C., Boddey, R. M., Jantalia, C. P., Urquiaga, S., et al. (2008). Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. Forest Ecology and Management, 255, 1516–1524.

    Article  Google Scholar 

  • Mashyanov, N. R., & Reshetovb, V. V. (1995). Geochemical ecological monitoring using the remote sensing technique. The Science of the Total Environment, 159(2), 169–175.

    Article  CAS  Google Scholar 

  • Matson, P. A., & Vitousek, P. M. (2006). Agricultural intensification: Will land spared from farming be land spared for nature? Conservation Biology, 20, 709–710.

    Article  Google Scholar 

  • Nanos, N., & Martín, J. A. R. (2012). Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma, 189–190, 554–562.

    Article  Google Scholar 

  • Neto, A. A. B., & Silva, A. B. D. (2004). Methodological criteria for auditing geochemical data sets aimed at selecting anomalous lead–zinc–silver areas using geographical information systems. Journal of Geochemical Exploration, 84, 93–101.

    Article  Google Scholar 

  • Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242.

    Article  Google Scholar 

  • Plant, J., Smith, D., Smith, B., & Williams, L. (2001). Environmental geochemistry at global scale. Applied Geochemistry, 16(11–12), 1291–1308.

    Article  CAS  Google Scholar 

  • Sharma, P., Rai, S. C., Sharma, R., & Sharma, E. (2004). Effects of land-use change on soil microbial C, N and P in a Himalayan watershed. Pedobiologia, 48, 83–92.

    Article  Google Scholar 

  • Simanton, R., & Osborn, H. B. (1980). Reciprocal-distance estimate of point rainfall. Journal of Hydraulic Engineering Division, 106(7), 1242–1246.

    Google Scholar 

  • Song, Y., & Liu, H. (2013). Typical urban gully nitrogen migration in Changchun City, China. Environmental Geochemistry and Health, 35(6), 789–799.

    Article  CAS  Google Scholar 

  • Stevenson, B. A., Parfitt, R. L., Schipper, L. A., Baisden, W. T., & Mudge, P. (2010). Relationship between soil δ15N, C/N and N losses across land uses in New Zealand agriculture. Ecosystems and Environment, 139, 736–741.

    Article  CAS  Google Scholar 

  • Takamatsu, T., Watanabe, M., Koshikawa, M. K., Murata, T., Yamamura, S., & Hayashi, S. (2010). Pollution of montane soil with Cu, Zn, As, Sb, Pb, and nitrate in Kanto, Japan. Science of the Total Environment, 408(8), 1932–1942.

    Article  CAS  Google Scholar 

  • Villaescusa Celaya, J. A., Gutierrez Galindo, E. E., & Flores Munoz, G. (2000). Heavy metals in the fine fraction of coastal sediments from Baja California (Mexico) and California (USA). Environmental Pollution, 108(3), 453–462.

    Article  CAS  Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737–750.

    Google Scholar 

  • Wang, G. (2009). Agrology. China: Higher Education Press.

    Google Scholar 

  • Woli, K. P., Nagumo, T., Kuramochi, K., & Hatano, R. (2004). Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Science of the Total Environment, 329, 61–74.

    Article  CAS  Google Scholar 

  • Ye, X. F., Bai, J. H., Lu, Q. Q., Zhao, Q. Q., & Wang, J. J. (2014). Spatial and seasonal distributions of soil phosphorus in a typical seasonal flooding wetland of the Yellow River Delta, China. Environmental Earth Science, 71, 4811–4820.

    Article  Google Scholar 

  • Yin, Z. H. (1992). Landscape geochemistry. Advance in Earth Sciences, 7(5), 63–64.

    Google Scholar 

  • Zhang, C. S., Jordan, C., & Higgins, A. (2007). Using neighbourhood statistics and GIS to quantify and visualize spatial variation in geochemical variables: An example using Ni concentrations in the topsoils of Northern Ireland. Geoderma, 137(3–4), 466–476.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant No. 41101174), China Postdoctoral Science Foundation (Grant No. 2013M540700), Special Grants for Postdoctoral Research Projects in Sichuan Province (Grant No. SZD013), China Geological Survey Projects (Grant No. 12120113002301), Young and Middle-aged Excellent Teacher Training Program, Research Foundation of Chengdu University of Technology, and Projects of Landslide Hazard Information Extraction based on Multi-sources Data (Grant No. SKLGP 2011Z005). We also thank the Southeast Sichuan Geological Team of the Chongqing Bureau of Geology and Minerals Exploration for providing the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., He, ZW., Kong, B. et al. The spatial relationship between human activities and C, N, P, S in soil based on landscape geochemical interpretation. Environ Geochem Health 38, 381–398 (2016). https://doi.org/10.1007/s10653-015-9725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9725-9

Keywords

Navigation