Skip to main content
Log in

Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The phosphorus (P) adsorption characteristic of sesame straw biochar prepared with different activation agents and pyrolysis temperatures was evaluated. Between 0.109 and 0.300 mg L−1 in the form of inorganic phosphate was released from raw sesame straw biochar in the first 1 h. The release of phosphate was significantly enhanced from 62.6 to 168.2 mg g−1 as the pyrolysis temperature increased. Therefore, sesame straw biochar cannot be used as an adsorbent for P removal without change in the physicochemical characteristics. To increase the P adsorption of biochar in aqueous solution, various activation agents and pyrolysis temperatures were applied. The amount of P adsorbed from aqueous solution by biochar activated using different activation agents appeared in the order ZnCl2 (9.675 mg g−1) > MgO (8.669 mg g−1) ⋙ 0.1N-HCl > 0.1N-H2SO4 > K2SO4 ≥ KOH ≥ 0.1N-H3PO4, showing ZnCl2 to be the optimum activation agent. Higher P was adsorbed by the biochar activated using ZnCl2 under different pyrolysis temperatures in the order 600 °C > 500 °C > 400 °C > 300 °C. Finally, the amount of adsorbed P by activated biochar at different ratios of biochar to ZnCl2 appeared in the order 1:3 ≒ 1:1 > 3:1. As a result, the optimum ratio of biochar to ZnCl2 and pyrolysis temperature were found to be 1:1 and 600 °C for P adsorption, respectively. The maximum P adsorption capacity by activated biochar using ZnCl2 (15,460 mg kg−1) was higher than that of typical biochar, as determined by the Langmuir adsorption isotherm. Therefore, the ZnCl2 activation of sesame straw biochar was suitable for the preparation of activated biochar for P adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari, R., & Singh, M. V. (2003). Sorption characteristics of lead and cadmium in some soils of India. Geoderma, 114, 81–92.

    Article  CAS  Google Scholar 

  • Ahmad, Z., Faridullah, El-Sharkawi, H., Irshad, M., Honna, T., Yamamoto, S., & Al-Busaidi, A. S. (2008). Changes in water-extractability of soil inorganic phosphate induced by chloride and sulfate salts. Environmental Science and Pollution Research, 15, 23–26.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource technology, 118, 536–544.

    Article  CAS  Google Scholar 

  • Ahmad, M., Moon, D. H., Vithanage, M., Koutsospyros, A., Lee, S. S., Yang, J. E., et al. (2014). Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. Journal of Chemical Technology and Biotechnology, 89, 150–157.

    Article  CAS  Google Scholar 

  • Ali, I. (2010). The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater. Separation & Purification Reviews, 39, 95–171.

    Article  CAS  Google Scholar 

  • Almaroai, Y. A., Usman, A. R. A., Ahmad, M., Moon, D. H., Cho, J. S., Joo, Y. K., et al. (2013). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Science, 71, 1289–1296.

    Article  Google Scholar 

  • Altundogan, H. S., & Tumen, F. (2002). Removal of phosphates from aqueous solutions by using bauxite. I. Effect of pH on the adsorption of various phosphates. Journal of Chemical Technology and Biotechnology, 77, 77–85.

    Article  CAS  Google Scholar 

  • APHA-AWWA-WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Bansal, R. C., Donnet, J. P., & Stoeckli, F. (1988). Active carbon (p. 27). New York: Marcel Dekker.

    Google Scholar 

  • Bhargava, D. S., & Sheldarkar, S. B. (1993). Use of TNSAC in phosphate adsorption studies and relationships. Literature, experimental methodology, justification and effects of process variables. Water Research, 27, 303–312.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168, 493–504.

    Article  CAS  Google Scholar 

  • Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresource technology, 99, 8685–8690.

    Article  CAS  Google Scholar 

  • Bohn, H., McNeal, G., & O’connor, G. (1979). Soil chemistry. New York: Wiley.

    Google Scholar 

  • Bouchemal, N., Belhachemi, M., Merzougui, Z., & Addoun, F. (2009). The effect of temperature and impregnation ratio on the active carbon porosity. Desalination and Water Treatment, 10, 115–120.

    Article  CAS  Google Scholar 

  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419–428.

    Article  CAS  Google Scholar 

  • Caturla, F., Molina-Sabio, M., & Rodriguez-Reinoso, F. (1991). Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 29, 999–1007.

    Article  CAS  Google Scholar 

  • Chan, K. Y., & Xu, Z. (2009). Biochar: Nutrient properties and their enhancement. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and technology. London: Earthscan Publication Ltd.

    Google Scholar 

  • Chen, B., & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76, 127–133.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource technology, 102, 8877–8884.

    Article  CAS  Google Scholar 

  • Chen, J. G., Kong, H. N., Wu, D. Y., Chen, X. C., Zhang, D. L., & Sun, Z. H. (2007). Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. Journal of Hazardous Materials, B139, 293–300.

    Article  Google Scholar 

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology, 42, 5137–5143.

    Article  CAS  Google Scholar 

  • Chirone, R., Salatino, P., & Scala, F. (2000). The relevance of attrition to the fate of ashes during fluidized-bed combustion of a biomass. Proceeding of the Combustion Institute, 28, 2279–2286.

    Article  CAS  Google Scholar 

  • Chouyyok, W., Wiacek, R. J., Pattamakomsan, K., Sangvanich, T., Grudzien, R. M., Fryxell, G. E., & Yantasee, W. (2010). Phosphate removal by anion binding on functionalized nanoporous sorbents. Environmental Science and Technology, 44, 3073–3078.

    Article  CAS  Google Scholar 

  • Das, D. D., Schnitzer, M. I., Monreal, C. M., & Mayer, P. (2009). Chemical composition of acid–base fractions separated from bio-oil derived by fast pyrolysis of chicken manure. Bioresource technology, 100, 6524–6532.

    Article  CAS  Google Scholar 

  • Day, D., Evans, R. J., Lee, J. W., & Reicosky, D. (2005). Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy, 30, 2558–2579.

    Article  CAS  Google Scholar 

  • de-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 38, 4222–4246.

    Article  CAS  Google Scholar 

  • Drizo, A., Forget, C., Chapuis, R. P., & Comeau, Y. (2000). How realistic are the linear Langmuir predictions of phosphate retention by adsorbing materials?. Paris: First World Congress of the International Water Association.

    Google Scholar 

  • Eberhardt, T. L., Min, S. H., & Han, J. S. (2006). Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride. Bioresource technology, 97, 2371–2376.

    Article  CAS  Google Scholar 

  • Fang, X. L., Chen, C., Jin, M. S., Kuang, Q., Xie, Z. X., Xie, S. Y., et al. (2009). Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and applications in gas sensors, photocatalysis and water treatment. Journal of Material Chemistry, 19, 6154–6160.

    Article  CAS  Google Scholar 

  • Genz, A., Kornmuller, A., & Jekel, M. (2004). Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Research, 38, 3523–3530.

    Article  CAS  Google Scholar 

  • Gieseke, A., Arnz, P., Amann, R., & Schramm, A. (2002). Simultaneous P and N removal in a sequencing batch biofilm reactor: Insights from reactor- and microscale investigations. Water Research, 36, 501–509.

    Article  CAS  Google Scholar 

  • Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma, V., et al. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science and Technology, 46(5), 2830–2838.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource technology, 110, 50–56.

    Article  CAS  Google Scholar 

  • Jia, Q., & Lua, A. C. (2008). Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption. Journal of Analytical and Applied Pyrolysis, 83, 175–179.

    Article  CAS  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44, 1247–1253.

    Article  CAS  Google Scholar 

  • Krishnan, K. A., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. Journal of Hazardous Materials, 152, 527–535.

    Article  CAS  Google Scholar 

  • Kumar, P., Sudha, S., Chand, S., & Srivastava, V. C. (2010). Phosphate removal from aqueous solution using coir-pith activated carbon. Separation Science and Technology, 45, 1463–1470.

    Article  CAS  Google Scholar 

  • Lee, S. S., Lim, J. E., El-Azeem, S. A. M. A., Choi, B., Oh, S. E., Moon, D. H., & Ok, Y. S. (2013). Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research, 20, 1719–1726.

    Article  CAS  Google Scholar 

  • Li, J., Lv, G., Bai, W., Zhang, Y., & Song, J. (2014). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalination and Water Treatment, 1–13. doi:10.1080/19443994.2014.994104

  • Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., et al. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.

    Article  CAS  Google Scholar 

  • Liu, Q. S., Zheng, T., Wang, P., Jiang, J.-P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157, 348–356.

    Article  CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26, 259–264.

    Article  CAS  Google Scholar 

  • Mahmoud, D. K., Salleh, M. A. M., Karim, W. A. W. A., Idris, A., & Abidin, Z. Z. (2012). Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 181, 449–457.

    Article  Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U, Jr. (2014). Organic and inorganic contaminants from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource technology, 160, 191–202.

    Article  CAS  Google Scholar 

  • Mohan, D., Sharma, R., Singh, V. K., Steele, P., & Pittman, C. U, Jr. (2012). Fluoride removal from water using bio-char, a green waste low cost adsorbent: Equilibrium uptake and sorption dynamics modeling. Industrial and Engineering Chemistry Research, 51(2), 900–914.

    Article  CAS  Google Scholar 

  • Mohanty, K., Das, D., & Biswas, M. N. (2006). Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to removal phenol from wastewater. Adsorption, 12(2), 119–132.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. Journal of Colloid and Interface Science, 280, 359–365.

    Article  CAS  Google Scholar 

  • Neufeld, R. D., & Thodos, G. (1969). Removal of orthophosphates from aqueous solutions with activated alumina. Environmental Science and Technology, 3, 661–667.

    Article  CAS  Google Scholar 

  • Ou, E. C., Zhou, J. J., Mao, S. C., Wang, J. Q., Xia, F., & Min, L. (2007). Highly efficient removal of phosphate by lanthanum-doped mesoporous SiO2. Colloids and Surfaces, 308, 47–53.

    Article  CAS  Google Scholar 

  • Őzacar, M. (2003). Equilibrium and kinetic modelling of adsorption of phosphorus on calcined alunite. Adsorption, 9, 125–132.

    Article  Google Scholar 

  • Qian, T., Zhang, X., Hu, J., & Jiang, H. (2013). Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 93, 2069–2075.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Ahmad, M., Seo, D. C., Cho, J. S., Lee, S. E., et al. (2015). Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. Journal of Hazardous Materials, 290, 43–50.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Dinesh, M., Chang, S. X., & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource technology, 166, 303–308.

    Article  CAS  Google Scholar 

  • Raji, C., & Anirudhan, T. S. (1998). Batch Cr(VI) Removal by polyacrylamide-grafted sawdust: Kinetics and thermodynamic. Water Research, 32(12), 3772–3780.

    Article  CAS  Google Scholar 

  • Seo, D. C., Cho, J. S., Lee, H. J., & Heo, J. S. (2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research, 39, 2445–2457.

    Article  CAS  Google Scholar 

  • Singh, M., & Srivastava, R. K. (2011). Sequencing batch reactor technology for biological wastewater treatment: A review. Asia-Pacific Journal of Chemical Engineering, 6, 3–13.

    Article  CAS  Google Scholar 

  • Southam, D. C., Lewis, T. W., McFarlane, A. J., & Hohnston, H. H. (2004). Amorphou0073 calcium silicate as a chemisorbent for phosphate. Current Applied Physics, 4, 355–358.

    Article  Google Scholar 

  • Stratful, I., Scrimshaw, M. D., & Lester, J. N. (2001). Conditions influencing the precipitation of magnesium ammonium phosphate. Water Research, 35, 4191–4199.

    Article  CAS  Google Scholar 

  • Streat, M., Hellgardt, K., & Newton, N. L. R. (2008). Hydrous ferric oxide as an adsorbent in water treatment: Part 1. Preparation and physical characterization. Process Safety and Environmental Protection, 86, 1–9.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 190(1–3), 432–441.

    Article  CAS  Google Scholar 

  • Xu, X., Gao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science Pollution Research, 20, 358–368.

    Article  CAS  Google Scholar 

  • Yang, J. E., Skogley, E. O., & Ok, Y. S. (2011). Carbonaceous resin capsule for vapor-phase monitoring of volatile monoaromatic hydrocarbons in soil. Soil and Sediment Contamination, 20, 205–220.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011a). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource technology, 102(10), 6273–6278.

    Article  CAS  Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011b). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190(1–3), 501–507.

    Article  CAS  Google Scholar 

  • Zach-Maor, A., Semiat, R., & Shemer, H. (2011). Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal. Journal of Colloid and Interface Science, 357, 440–446.

    Article  CAS  Google Scholar 

  • Zhang, Q. L., Lin, Y. C., Chen, X., & Gao, N. Y. (2007). A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials, 148, 671–678.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea grant funded by the Korea Government (Ministry of Education, Science and Technology), [2012R1A2A2A01015706, 2014R1A1A2007515].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. S. Cho or D. C. Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Ok, Y.S., Kim, S.H. et al. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures. Environ Geochem Health 37, 969–983 (2015). https://doi.org/10.1007/s10653-015-9709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9709-9

Keywords

Navigation