Skip to main content

Advertisement

Log in

In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The characterization of aerosol acidity has received increased attention in recent years due to its influence on atmospheric visibility, climate change and human health. Distribution of water soluble inorganic (WSI) ions in 12 different size fractions of aerosols was investigated under two different atmospheric conditions (smoke-haze and non-haze periods) in 2012 using the Micro-Orifice Uniform Deposit Impactor (MOUDI) and nano-MOUDI for the first time in Singapore. To estimate the in situ acidity ([H+]Ins) and in situ aerosol pH (pHIS), the Aerosol Inorganic Model version-IV under deliquescent mode of airborne particles was used at prevailing ambient temperature and relative humidity. The study revealed an increase in the levels of airborne particulate matter (PM) mass and concentrations of WSI ions for all size fractions during the smoke-haze period, which was caused by the trans-boundary transport of biomass burning-impacted air masses from Indonesia. A bimodal distribution was observed for concentrations of SO4 2−, NO3 , Cl, K+ and Na+, whereas concentrations of NH4 +, Ca2+ and Mg2+ showed a single mode distribution. The concentration of WSI ions in PM1.8 during the smoke-haze period increased by 3.8 (for SO4 2−) to 10.5 (for K+) times more than those observed during the non-haze period. The pHIS were observed to be lower during the smoke-haze period than that during the non-haze period for all size fractions of PM, indicating that atmospheric aerosols were more acidic due to the influence of biomass burning emissions. The particles in the accumulation mode were more acidic than those in the coarse mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreae, M. O., Andreae, T. W., Annegarn, H., Beer, J., Cachier, H., Le Canut, P., et al. (1998). Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research: Atmospheres, 103(D24), 32119–32128.

    Article  CAS  Google Scholar 

  • Balasubramanian, R., Qian, W. B., Decesari, S., Facchini, M. C., & Fuzzi, S. (2003). Comprehensive characterization of PM2.5 aerosols in Singapore. Journal of Geophysical Research: Atmospheres, 108(D16), 4523. doi:10.1029/2002JD002517.

    Article  Google Scholar 

  • Behera, S. N., & Balasubramanian, R. (2014). Influence of biomass burning on temporal and diurnal variations of acidic gases, particulate nitrate and sulfate in a tropical urban atmosphere. Advances in Meteorology. doi:10.1155/2014/828491.

  • Behera, S. N., Betha, R., Liu, P., & Balasubramanian, R. (2013). A study of diurnal variations of PM2.5 acidity and related chemical species using a new thermodynamic equilibrium model. Science of the Total Environment, 452, 286–295.

    Article  Google Scholar 

  • Behera, S. N., & Sharma, M. (2010). Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Science of the Total Environment, 408(17), 3569–3575.

    Article  CAS  Google Scholar 

  • Behera, S. N., & Sharma, M. (2012). Transformation of atmospheric ammonia and acid gases into components of PM2. 5: An environmental chamber study. Environmental Science and Pollution Research, 19(4), 1187–1197.

    Article  CAS  Google Scholar 

  • Betha, R., Behera, S. N., & Balasubramanian, R. (2014). 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environmental Science and Technology, 48(8), 4327–4335.

    Article  CAS  Google Scholar 

  • Betha, R., Pradani, M., Lestari, P., Joshi, U. M., Reid, J. S., & Balasubramanian, R. (2013). Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmospheric Research, 122, 571–578.

    Article  CAS  Google Scholar 

  • Cao, G., & Jang, M. (2009). An SOA model for toluene oxidation in the presence of inorganic aerosols. Environmental Science and Technology, 44(2), 727–733.

    Article  Google Scholar 

  • Chang, L. P., Tsai, J. H., Chang, K. L., & Lin, J. J. (2008). Water-soluble inorganic ions in airborne particulates from the nano to coarse mode: A case study of aerosol episodes in southern region of Taiwan. Environmental Geochemistry and Health, 30(3), 291–303.

    Article  CAS  Google Scholar 

  • Cheng, S. H., Yang, L. X., Zhou, X. H., Xue, L. K., Gao, X. M., Zhou, Y., & Wang, W. X. (2011). Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment, 45(27), 4631–4640.

    Article  CAS  Google Scholar 

  • Clegg, S. L., Brimblecombe, P., & Wexler, A. S. (1998a). Thermodynamic model of the system H+–NH4 +–Na+–SO4 2−–NO3 –Cl–H2O at 298.15 K. The Journal of Physical Chemistry A, 102(12), 2155–2171.

    Article  CAS  Google Scholar 

  • Clegg, S. L., Brimblecombe, P., & Wexler, A. S. (1998b). Thermodynamic model of the system H+–NH4 +–SO4 2−–NO3–H2O at tropospheric temperatures. The Journal of Physical Chemistry A, 102(12), 2137–2154.

    Article  CAS  Google Scholar 

  • Draxler, R. R., & Rolph, G.D. (2013). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY. Website http://www.arl.noaa.gov/HYSPLIT.php. College Park, MD: NOAA Air Resources Laboratory.

  • Du, H., Kong, L., Cheng, T., Chen, J., Du, J., Li, L., et al. (2011). Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmospheric Environment, 45(29), 5131–5137.

    Article  CAS  Google Scholar 

  • Engling, G., He, J., Betha, R., & Balasubramanian, R. (2014). Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling. Atmospheric Chemistry and Physics, 14, 8043–8054.

    Article  CAS  Google Scholar 

  • Friese, E., & Ebel, A. (2010). Temperature dependent thermodynamic model of the system H+–NH4 +–Na+–SO4 2−–NO3 –Cl–H2O. The Journal of Physical Chemistry A, 114(43), 11595–11631.

    Article  CAS  Google Scholar 

  • Hatch, C. D., & Grassian, V. H. (2008). 10th anniversary review: Applications of analytical techniques in laboratory studies of the chemical and climatic impacts of mineral dust aerosol in the Earth’s atmosphere. Journal of Environmental Monitoring, 10(8), 919–934.

    Article  CAS  Google Scholar 

  • He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., et al. (2012). Spatial and seasonal variability of PM 2.5 acidity at two Chinese megacities: Insights into the formation of secondary inorganic aerosols. Atmospheric Chemistry and Physics, 12(3), 1377–1395.

    Article  CAS  Google Scholar 

  • Holma, B. (1985). Influence of buffer capacity and pH-dependent rheological properties of respiratory mucus on health effects due to acidic pollution. Science of the Total Environment, 41(2), 101–123.

    Article  CAS  Google Scholar 

  • Jang, M., Czoschke, N. M., Lee, S., & Kamens, R. M. (2002). Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science, 298(5594), 814–817.

    Article  CAS  Google Scholar 

  • Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718), 67–71.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., & Balasubramanian, R. (2006). Determination of water-soluble inorganic and organic species in atmospheric fine particulate matter. Microchemical Journal, 82(1), 49–55.

    Article  CAS  Google Scholar 

  • Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., et al. (2001). Confounding and effect modification in the short-term effects of ambient particles on total mortality: Results from 29 European cities within the APHEA2 project. Epidemiology, 12(5), 521–531.

    Article  CAS  Google Scholar 

  • Kennish, M. J. (1994). Practical handbook of marine science. Boca Raton, FL: C.R.C. Press.

    Google Scholar 

  • Kerminen, V. M., Hillamo, R., Teinilä, K., Pakkanen, T., Allegrini, I., & Sparapani, R. (2001). Ion balances of size-resolved tropospheric aerosol samples: Implications for the acidity and atmospheric processing of aerosols. Atmospheric Environment, 35(31), 5255–5265.

    Article  CAS  Google Scholar 

  • Kerminen, V. M., & Wexler, A. S. (1995). Growth laws for atmospheric aerosol particles: An examination of the bimodality of the accumulation mode. Atmospheric Environment, 29(22), 3263–3275.

    Article  CAS  Google Scholar 

  • Kittelson, D. B. (1998). Engines and nanoparticles: A review. Journal of Aerosol Science, 29(5), 575–588.

    Article  CAS  Google Scholar 

  • Lee, H. S., Kang, C. M., Kang, B. W., & Kim, H. K. (1999). Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmospheric Environment, 33(19), 3143–3152.

    Article  CAS  Google Scholar 

  • Leiva, G. M. A., Santibañez, D. A., Ibarra, E. S., Matus, C. P., & Seguel, R. (2013). A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environmental Pollution, 181, 1–6.

    Article  Google Scholar 

  • Lin, C. C., Chen, S. J., Huang, K. L., Lee, W. J., Lin, W. Y., Liao, C. J., & Chiu, C. H. (2007). Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site. Environmental Pollution, 145(2), 562–570.

    Article  CAS  Google Scholar 

  • Lin, Y. C., & Cheng, M. T. (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9), 1903–1910.

    Article  CAS  Google Scholar 

  • Ma, J., Tang, J., Li, S. M., & Jacobson, M. Z. (2003). Size distributions of ionic aerosols measured at Waliguan observatory: Implication for nitrate gas‐to‐particle transfer processes in the free troposphere. Journal of Geophysical Research: Atmospheres, 108(D17). doi:10.1029/2002JD003356.

  • Manktelow, P. T., Carslaw, K. S., Mann, G. W., & Spracklen, D. V. (2010). The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm. Atmospheric Chemistry and Physics, 10(2), 365–382.

    Article  CAS  Google Scholar 

  • Meng, Z., & Seinfeld, J. H. (1994). On the source of the submicrometer droplet mode of urban and regional aerosols. Aerosol Science and Technology, 20(3), 253–265.

    Article  CAS  Google Scholar 

  • Meng, Z., Seinfeld, J. H., Saxena, P., & Kim, Y. P. (1995). Atmospheric gas-aerosol equilibrium: IV. Thermodynamics of carbonates. Aerosol Science and Technology, 23(2), 131–154.

    Article  CAS  Google Scholar 

  • Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science, 297(5590), 2250–2253.

    Article  CAS  Google Scholar 

  • Nel, A. (2005). Air pollution-related illness: Effects of particles. Science, 308(5723), 804–806.

    Article  CAS  Google Scholar 

  • Nenes, A., Krom, M. D., Mihalopoulos, N., Van Cappellen, P., Shi, Z., Bougiatioti, A., et al. (2011). Atmospheric acidification of mineral aerosols: A source of bioavailable phosphorus for the oceans. Atmospheric Chemistry and Physics, 11(13), 6265–6272.

    Article  CAS  Google Scholar 

  • Nenes, A., Pandis, S. N., & Pilinis, C. (1998). ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry, 4(1), 123–152.

    Article  CAS  Google Scholar 

  • Pathak, R. K., Louie, P. K. K., & Chan, C. K. (2004). Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment, 38(19), 2965–2974.

    Article  CAS  Google Scholar 

  • Pathak, R. K., Yao, X., Lau, A. K., & Chan, C. K. (2003). Acidity and concentrations of ionic species of PM2.5 in Hong Kong. Atmospheric Environment, 37(8), 1113–1124.

    Article  CAS  Google Scholar 

  • Pavagadhi, S., Betha, R., Venkatesan, S., Balasubramanian, R., & Hande, M. P. (2013). Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environmental Science and Pollution Research, 20(4), 2569–2578.

    Article  CAS  Google Scholar 

  • Pierson, W. R., & Brachaczek, W. W. (1988). Coarse-and fine-particle atmospheric nitrate and HNO3(g) in Claremont, California, during the 1985 nitrogen species methods comparison study. Atmospheric Environment, 22(8), 1665–1668.

    Article  CAS  Google Scholar 

  • Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air and Waste Management Association, 56(6), 709–742.

    Article  CAS  Google Scholar 

  • Poppe, D., Wallasch, M., & Zimmermann, J. (1993). The dependence of the concentration of OH on its precursors under moderately polluted conditions: A model study. Journal of Atmospheric Chemistry, 16(1), 61–78.

    Article  CAS  Google Scholar 

  • Raizenne, M., Neas, L. M., Damokosh, A. I., Dockery, D. W., Spengler, J. D., Koutrakis, P., et al. (1996). Health effects of acid aerosols on North American children: Pulmonary function. Environmental Health Perspectives, 104(5), 506.

    Article  CAS  Google Scholar 

  • Reid, J. S., Hyer, E. J., Johnson, R. S., Holben, B. N., Yokelson, R. J., Zhang, J., et al. (2013). Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research, 122, 403–468.

    Article  CAS  Google Scholar 

  • Rengarajan, R., Sudheer, A. K., & Sarin, M. M. (2011). Aerosol acidity and secondary organic aerosol formation during wintertime over urban environment in western India. Atmospheric Environment, 45(11), 1940–1945.

    Article  CAS  Google Scholar 

  • Ryu, S. Y., Kim, J. E., Zhuanshi, H., Kim, Y. J., & Kang, G. U. (2004). Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of the Air and Waste Management Association, 54(9), 1124–1137.

    Article  CAS  Google Scholar 

  • Saxena, P., Mueller, P. K., Kim, Y. P., Seinfeld, J. H., & Koutrakis, P. (1993). Coupling thermodynamic theory with measurements to characterize acidity of atmospheric particles. Aerosol Science and Technology, 19(3), 279–293.

    Article  CAS  Google Scholar 

  • See, S. W., Balasubramanian, R., Rianawati, E., Karthikeyan, S., & Streets, D. G. (2007). Characterization and source apportionment of particulate matter 2.5 μm in Sumatra, Indonesia, during a recent peat fire episode. Environmental Science and Technology, 41(3488–3494), 2007.

    Google Scholar 

  • See, S. W., Balasubramanian, R., & Wang, W. (2006). A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. Journal of Geophysical Research: Atmospheres, 111(D10). doi:10.1029/2005JD006180.

  • Song, C. H., & Carmichael, G. R. (1999). The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport. Atmospheric Environment, 33(14), 2203–2218.

    Article  CAS  Google Scholar 

  • Sun, Z., Mu, Y., Liu, Y., & Shao, L. (2013). A comparison study on airborne particles during haze days and non-haze days in Beijing. Science of the Total Environment, 456, 1–8.

    Article  Google Scholar 

  • Sun, Y., Zhuang, G., Tang, A., Wang, Y., & An, Z. (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science and Technology, 40(10), 3148–3155.

    Article  CAS  Google Scholar 

  • Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., & Seinfeld, J. H. (2007). Effect of acidity on secondary organic aerosol formation from isoprene. Environmental Science and Technology, 41(15), 5363–5369.

    Article  CAS  Google Scholar 

  • Tan, J. H., Duan, J. C., Chen, D. H., Wang, X. H., Guo, S. J., Bi, X. H., et al. (2009). Chemical characteristics of haze during summer and winter in Guangzhou. Atmospheric Research, 94(2), 238–245.

    Article  CAS  Google Scholar 

  • Tsai, J. H., Chang, L. P., & Chiang, H. L. (2013). Size mass distribution of water-soluble ionic species and gas conversion to sulfate and nitrate in particulate matter in Southern Taiwan. Environmental Science and Pollution Research, 20(7), 4587–4602.

    Article  CAS  Google Scholar 

  • Tsai, J. H., Lin, J. H., Yao, Y. C., & Chiang, H. L. (2012). Size distribution and water soluble ions of ambient particulate matter on episode and non-episode days in Southern Taiwan. Aerosol and Air Quality Research, 12, 263–274.

    CAS  Google Scholar 

  • Tsai, H. H., Yuan, C. S., Hung, C. H., & Lin, C. (2011). Physicochemical properties of PM2. 5 and PM2.5–10 at Inland and offshore sites over Southeastern Coastal Region of Taiwan Strait. Aerosol and Air Quality Research, 11, 664–678.

    CAS  Google Scholar 

  • Wall, S. M., John, W., & Ondo, J. L. (1988). Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment, 22(8), 1649–1656.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, G., Sun, Y., & An, Z. (2006). The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmospheric Environment, 40(34), 6579–6591.

    Article  CAS  Google Scholar 

  • Weijers, E. P., Schaap, M., Nguyen, L., Matthijsen, J., Denier Van Der Gon, H. A. C., Ten Brink, H. M., & Hoogerbrugge, R. (2011). Anthropogenic and natural constituents in particulate matter in the Netherlands. Atmospheric Chemistry and Physics, 11(5), 2281–2294.

    Article  CAS  Google Scholar 

  • Xue, J., Lau, A. K., & Yu, J. Z. (2011). A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements. Atmospheric Environment, 45(39), 7081–7088.

    Article  CAS  Google Scholar 

  • Yao, X., Lau, A. P., Fang, M., Chan, C. K., & Hu, M. (2003). Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1—inorganic ions. Atmospheric Environment, 37(21), 2991–3000.

    Article  CAS  Google Scholar 

  • Yao, X., Ling, T. Y., Fang, M., & Chan, C. K. (2007). Size dependence of in situ pH in submicron atmospheric particles in Hong Kong. Atmospheric Environment, 41(2), 382–393.

    Article  CAS  Google Scholar 

  • Yu, C. Y., Dong, C., Wang, X. F., Yang, L. X., & Wang, W. X. (2011). Size distributions of water-soluble inorganic ions of atmospheric aerosol particles in autumn in Jinan. Journal of Environmental Science (China), 31(4), 561–5677.

    CAS  Google Scholar 

  • Zhang, Q., Jimenez, J. L., Worsnop, D. R., & Canagaratna, M. (2007). A case study of urban particle acidity and its influence on secondary organic aerosol. Environmental Science and Technology, 41(9), 3213–3219.

    Article  CAS  Google Scholar 

  • Zhou, Y., Xue, L., Wang, T., Gao, X., Wang, Z., Wang, X., et al. (2012). Characterization of aerosol acidity at a high mountain site in central eastern China. Atmospheric Environment, 51, 11–20.

    Article  CAS  Google Scholar 

  • Zhuang, H., Chan, C. K., Fang, M., & Wexler, A. S. (1999). Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment, 33(6), 843–853.

    Article  CAS  Google Scholar 

  • Ziemba, L. D., Fischer, E., Griffin, R. J., & Talbot, R. W. (2007). Aerosol acidity in rural New England: Temporal trends and source region analysis. Journal of Geophysical Research: Atmospheres, 112(D10S22). doi:10.1029/2006JD007605.

Download references

Acknowledgments

This research programme is funded by the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. The authors are grateful to NRF for the financial support from Grant No. R-706-002-101-281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajasekhar Balasubramanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S.N., Cheng, J. & Balasubramanian, R. In situ acidity and pH of size-fractionated aerosols during a recent smoke-haze episode in Southeast Asia. Environ Geochem Health 37, 843–859 (2015). https://doi.org/10.1007/s10653-014-9660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9660-1

Keywords

Navigation