Skip to main content

Advertisement

Log in

Geological factors controlling occurrence and distribution of arsenic in groundwaters from the southern margin of the Duero Basin, Spain

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater from springs and boreholes on the southern edge of the Cenozoic Duero Basin (DB) of Spain has concentrations of arsenic (As) which are commonly above the EC drinking-water limit of 10 μg/L and reach observed values up to 241 μg/L. Groundwater compositions within the sedimentary aquifer vary from Ca–HCO3 type, variably affected by evaporation and agricultural pollution at shallow levels, to Na–HCO3 compositions in deeper boreholes of the basin. Groundwater conditions are mainly oxidising, but reducing groundwaters exist in sub-basins within the aquifer, localised flow paths likely being influenced by basement structure. Arsenic concentrations are spatially variable, reaching up to 38 μg/L in springs of the Spanish Central System (SCS) basement aquifer and up to 62 μg/L in springs from the DB. Highest As concentrations are associated with the Na–HCO3 compositions in deep boreholes (200–450 m depth) within the DB. These have high pH values (up to 9.6) which can give rise to associated elevated concentrations of V and U (up to 64 and 30 μg/L, respectively). In the deep borehole waters of the DB, oxidising flows derived from the mineralised igneous–metamorphic basement and discharging via major faults, and are considered the origin of the higher concentrations. Compositions are consistent with desorption of As and other anionic species from metal oxyhydroxides in an oxic environment. Under locally reducing conditions prevalent in some low-flow parts of the DB, an absence of detectable dissolved As is coincident with low or undetectable SO4 concentrations, and consistent with loss via formation of authigenic sulphide minerals. Mitigation measures are needed urgently in this semi-arid region where provision of alternative sources of safe drinking water is logistically difficult and expensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberruche Del Campo, M.E., et al. (2010). Atlas del medio natural y de los recursos hídricos de la provincia de Ávila. Instituto Geológico y Minero de España-Diputación de Ávila. Madrid. 240 p.

  • Alonso Gavilán, G., Armenteros, I., Carballeira, J., Corrochano, A., Huerta, P., & Rodríguez, J. M. (2004). Cuenca del Duero. In: J. A. Vera (Ed.), Geología de España (pp. 550–556). Madrid: SGE-IGME.

  • Appelo, C. A. J., & Postma, D. (2009). Geochemistry, groundwater pollution (2nd ed.). Amsterdam: A.A. Balkema Publishers. 649 p.

    Google Scholar 

  • Appleyard, S. J., Angeloni, J., & Watkins, R. (2006). Arsenic-rich groundwater in an urban area experiencing drought increasing population density, Perth, Australia. Applied Geochemistry, 21, 83–97.

    Article  CAS  Google Scholar 

  • Aragonés, N., Pérez-Gómez, B., Pollán, M., Ramis, R., Vidal, E., Lope, V., et al. (2009). The striking geographical pattern of gastric cancer mortality in Spain: Environmental hypotheses revisited. BMC Cancer, 9, 316.

    Article  Google Scholar 

  • Ares Yañez, M., Gutiérrez Alonso, G., Díez Balda, M. A., & Álvarez, F. (1995). La prolongación del Despegue de Salamanca (segunda fase de deformación varisca) en el Horst de Mirueña (Zona Centro Ibérica). Rev. Soc. Geol. España, 8, 175–191.

    Google Scholar 

  • Armenteros, I., Corrochano, A., Alonso Gavilán, G., Carballeira, J., & Rodríguez, J. M. (2002). Duero basin (northern Spain). In W. Gibbons & T. Moreno (Eds.), The Geology of Spain (pp. 304–315). London: Geological Society.

    Google Scholar 

  • Barrios Sánchez, S., Reguilón Bragado, R., & Gonzalo Sanz, I. (2008). Caracterización Mineralógica de los Filones de Cuarzo con S= en la Mina Santa Cruz. Provincia de Ávila (España). Macla, 9, 45–46.

    Google Scholar 

  • Barroso, J. L., Lillo, J., Sahún, B., & Tenajas, J., (2002). Caracterización del contenido de arsénico en las aguas subterráneas de la zona comprendida entre el río Duero, el río Cega y el Sistema Central. Presente y Futuro del agua subterránea en España y la Directiva Marco Europea, Zaragoza, 77–84.

  • BOE 45. (febrero 21, 2003). REAL DECRETO 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. http://www.boe.es/boe/dias/2003/02/21/pdfs/A07228-07245.pdf.

  • Brookins, D. G. (1988). Eh-pH diagrams for geochemistry (176 pp.). New York: Springer.

    Book  Google Scholar 

  • Colmenero, J. R., Rodríguez, J. M., Gómez, J. J., & Carrasco, P. (2001). Estratigrafía del subsuelo y evolución sedimentaria del sector sur de la cuenca terciaria del Duero. Geotemas, 3, 129–132.

    Google Scholar 

  • Day, J. A., Montes-Bayon, M., Vounderheide, J. A., & Caruso, J. A. (2002). A study of method robustness for arsenic speciation in drinking water samples by anion exchange HPLC-ICP-MS. Analytical and Bioanalytical Chemistry, 373, 664–668.

    Article  CAS  Google Scholar 

  • De Vicente, G., Vegas, R., Muñoz Martín, A., Silva, P. G., Andriessen, P., Cloetingh, S., et al. (2007). Cenozoic thick-skinned deformation and topography evolution of the Spanish Central System. Global and Planetary Change, 58, 335–381.

    Article  Google Scholar 

  • Delgado, J., Medina, J., Vega, M., Carretero, C., & Pardo, R. (2009). Los Minerales de la Arcilla y el Arsénico en los Acuíferos de la Tierra de Pinares. Macla, 11, 75–76.

    Google Scholar 

  • Fernández, L., Vega, M, Carretero, M., Pardo, R, Debán, L. & Barrio, V., (2004). Hidrogeología de los acuíferos de la zona Vallelado-Mata de Cuéllar, Segovia afectados por altos contenidos de arsénico. Abstract VIII Simp. Hidrogeol., Zaragoza, 45–50.

  • Fujii, R., & Swain, W.C., (1995). Areal distribution of trace elements, salinity, major ions in shallow ground water, Tulare basin, Southern San Joaquin Valley, California. U.S. Geol. Surv. Wat. Res. Inv. Rep. 95-4048, 67 p.

  • García-Sanchez, A., & Alvarez-Ayuso, E. (2003). Arsenic in soils waters its relation to geology mining activities, Salamanca Province, Spain. Journal of Geochemical Exploration, 80, 69–79.

    Article  Google Scholar 

  • García-Sánchez, A., Moyano, A., & Mayorga, P. (2005). High arsenic in groundwater of central Spain. Environmental Geology, 47, 847–854.

    Article  Google Scholar 

  • Giménez-Forcada, et al. (2010a). Analysis of spatial variability of arsenic concentration in spring waters using principal components analysis geostatistical tools. In J. Bundschuh & P. Bhattacharya, (eds), Application to Central Iberian Zone, Province of Ávila, Spain. Arsenic in The Environment (pp. 33–35). Amsterdam: Balkema Publishers.

  • Giménez-Forcada et al. (2010b). Hydrogeotoxicity by as in spring waters from Sierra de Gredos—Duero basin area, Spain. In WRI-13 Proceedings water–rock interaction (pp. 453–456). Amsterdam: Balkema Publishers.

  • Gómez, J. J., Lillo, F. J., & Sahún, B. (2006). Naturally occurring arsenic in groundwater identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environmental Geology, 50, 1151–1170.

    Article  Google Scholar 

  • Gómez Ortiz, D., & Babín Vich, R. (1996). La tectónica alpina en el sector centro-oriental del borde norte del Sistema Central, Provincia de Segovia, España. Geogaceta, 19, 19–22.

    Google Scholar 

  • Herrero, M. (1999). El papel explicativo de las rocas filonianas en la evolución morfoestructural de áreas de zócalo cristalino: La Sierra de Ávila. Cuaternario y Geomorfología, 13, 51–60.

    Google Scholar 

  • ITGE. (1995). Informe de los estudios y obras realizados para el abastecimiento de agua potable en varios municipios de la provincia de Ávila durante los años 1994 y 1995. Tomo I –II. Convenio con la Excma. Diputación Provincial de Ávila.

  • Jiménez Benayas et al. (1997). Mapa Geológico y Minero de Castilla y León. Escala 1:400.000. Junta de Castilla y León-SIEMCALSA. 457 pp.

  • Komorowicz, I., & Barałkiewicz, D. (2011). Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—last decade review. Talanta, 84, 247–261.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547–569.

    Google Scholar 

  • Li, Y., Low, G. K.-C., Scott, J. A., & Amal, R. (2010). Arsenic speciation in municipal landfill leachate. Chemosphere, 79, 794–801.

    Article  CAS  Google Scholar 

  • López-Abente, G., Aragonés, N., Ramis, R., Hernández-Barrera, V., Pérez Gómez, B., Escolar-Pujolar, A., et al. (2006). Municipal distribution of bladder cancer mortality in Spain: possible role of mining and industry. BMC Public Health, 6, 17.

    Article  Google Scholar 

  • Lowers, H. A., Breit, G. N., Foster, A. L., Whitney, J., Yount, J., Uddin, M. N., et al. (2007). Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta, 71, 2699–2717.

    Article  CAS  Google Scholar 

  • Masuda, H., Mitamura, M., Farooqi, A. M., Muhanmad, N., Owada, M., Okazaki, K., et al. (2010). Geologic structure geochemical characteristics of sediments of fluoride arsenic contaminated groundwater aquifer in Kalalanwala its vicinity, Punjab, Pakistan. Geochemistry Journal, 44, 489–505.

    CAS  Google Scholar 

  • Milstein, L. S., Essader, A., Pellizzari, E. D., Fernando, R. A., & Akinbo, O. (2002). Selection of a suitable mobile phase for the speciation of four arsenic compounds in drinking water samples using ion-exchange chromatography coupled to inductively coupled plasma mass spectrometry. Environment International, 28, 277–283.

    Article  CAS  Google Scholar 

  • Moyano, A., García-Sánchez, A., Mayorga, P., Anawar, H. M., & Alvarez-Ayuso, E. (2008). Impact of irrigation with arsenic-rich groundwater on soils crops. Journal of Environmental Monitoring, 11, 498–502.

    Article  Google Scholar 

  • Murciego, A., Pellitero Pascual, E., Rodríguez, M. A., Álvarez-Ayuso, E., García-Sánchez, A., Rubio, F., et al. (2009). Arsenopyrite weathering products in Barruecopardo mine tailings, Salamanca, Spain. Macla, 11, 133–134.

    Google Scholar 

  • Naem, A., Westerhoff, P., & Mustafa, S. (2007). Vanadium removal by metal (hydr)oxide adsorbents. Water Research, 41(7), 1596–1602.

    Google Scholar 

  • Palencia Ortas, A., Osete, M. L., Vegas, R., & Silva, P. (2006). Paleomagnetic study of the Messejana Plasencia dyke, Portugal Spain: A lower Jurassic paleopole for the Iberian plate. Tectonophysics, 419, 455–472.

    Article  Google Scholar 

  • Pardo, R., Vega, M., Carretero, M., Medina, J., & Delgado, J. (2008). The occurrence geochemistry of arsenic in an aquifer of the Tierra de Pinares region, Duero basin, Spain. Abstract 2º Int. Congress Arsenic in the environment. Valencia.

  • Sahún, B., Gómez, J. J., Lillo, J., & Del Olmo, P. (2004). Arsénico en aguas subterráneas e interacción agua-roca: Un ejemplo en la cuenca terciaria del Duero, Castilla y León. España. Rev. Soc. Geol. España, 17, 137–155.

    Google Scholar 

  • Sahún, B., Niñerola, S., Gómez, J. J., Lillo, J., del Olmo, P., & Hernández, A., (2003). Estudio del contenido de arsénico en la zona central de la Depresión del Duero, Dirección General de Obras Hidráulicas y Calidad de las Aguas. Biblioteca del Ministerio de Medio Ambiente, 192 p.

  • Sánchez, F.J., (2006). Los grandes acuíferos de la Cuenca del Duero. In: http://www.unizar.es/fnca/duero/docu/p105.pdf.

  • Schreiber, M. E., Gotkowitz, M. B., Simo, J. A., & Freiberg, P. G., (2003). Mechanisms of Arsenic. Release to Groundwater from Naturally Occurring Sources, Eastern Wisconsin. In: Welch, A. K. Stollenwerk, (eds). Arsenic in Groundwater. Boston: Kluwer Academic Publishers, 488 p.

  • Seddique, A. A., Masuda, H., Mitamura, M., Shinoda, K., Yamanaka, T., Itai, T., et al. (2008). Biotite releasing arsenic into Holocene groundwater aquifer in Bangladesh. Applied Geochemistry, 23, 2236–2248.

    Article  CAS  Google Scholar 

  • Simón Gómez, J.L., (1996). Estudio estructural de la Comarca de La Moraña. Dept. Geología. University of Zaragoza. 41 p. Unpublished.

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., Macdonald, D. M. J., Nicolli, H. B., Barros, A. J., Tullio, J. O., Pearce, J. M., & Alonso, M. S. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20, 989–1016.

    Google Scholar 

  • Ubanell, A. G. (1985). Características principales de la fracturación tardihercínica en un segmento del Sistema Central Español. Cuad. Geo. Ibe., 7, 591–605.

    Google Scholar 

  • Vilanova, E., Mas-Pla, J., & Menció, A. (2008). Determinación de sistemas de flujo regionales y locales en las depresiones tectónicas del Baix Empordà y La Selva (NE de España) en base a datos hidroquímicos e isotópicos. Boletín Geológico y Minero, 119(1), 51–62.

    Google Scholar 

  • Welch, A. H., & Lico, M. S. (1998). Factors controlling As U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 13, 521–539.

    Article  CAS  Google Scholar 

  • WHO Guidelines for drinking-water quality, fourth edition World Health Organization. (2011). http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf.

Download references

Acknowledgments

This work has been carried out through a Mobility Fellowship for Senior Researchers and Professors Program, and granted by the Education Ministry (Spanish Government). PLS participates with partial funding from the Natural Environment Research Council. We acknowledge the Ministerio de Medio Ambiente, Medio Rural y Marino (MARM) for providing their groundwater chemistry data for boreholes in the Duero Basin. We also acknowledge laboratory staff from IGME and BGS for carrying out chemical analysis of groundwater samples, and from the University of Valladolid for analysis of arsenic species. EGF acknowledges the help of a number of IGME and external colleagues during the course of the conduct of this research. Co-workers from Salamanca Unit of IGME provided useful geological, mineralogical and tectonic information. Finally, sincere thanks go to José Luis Simón Gómez from the University of Zaragoza for advice on tectonic structures, and Javier Sánchez San Román, from the University of Salamanca, for advice on the hydrogeology of the area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Giménez-Forcada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giménez-Forcada, E., Smedley, P.L. Geological factors controlling occurrence and distribution of arsenic in groundwaters from the southern margin of the Duero Basin, Spain. Environ Geochem Health 36, 1029–1047 (2014). https://doi.org/10.1007/s10653-014-9599-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9599-2

Keywords

Navigation