Skip to main content
Log in

Urban sediment contamination in a former Hg mining district, Idrija, Slovenia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Road sediments from gully pots of the drainage system and stream sediments from local streams were investigated for the first time in the urban area of Idrija town, the central part of the second largest and strongly contaminated Hg mining district in the world. Hg concentrations in road sediments were lower than in stream sediments. They ranged from 16 to 110 mg/kg (Md = 29 mg/kg) for <0.125 mm particles and from 7 to 125 mg/kg (Md = 35 mg/kg) for <0.04 mm particles, while Hg concentrations in stream sediments ranged from 10 to 610 mg/kg (Md = 95 mg/kg) for <0.125 particles and from 10 to 440 mg/kg (Md = 105 mg/kg) for <0.04 mm particles. High Hg loadings in stream sediments were successfully linked with identified mercury sources (rocks containing mercury ore, areas of former ore roasting sites, ore residue dumps), because they are located in the drainage areas of streams, from which the sediments were collected. Links between Hg loadings in road sediments and identified mercury sources were not recognized. Solid phases of Hg were determined by thermo-desorption technique and are similar for both types of sediments. Results show the occurrence of three different forms: elemental mercury, mercury bound to matrix components and cinnabar. Approximately 50 % of Hg in samples consist of non-cinnabar fractions. This is important, since they are potentially bioavailable. An interesting new discovery according to previous research of environmental media from Idrija area by solid-phase Hg thermo-desorption technique is that elemental mercury was determined in almost all investigated sediments in minor amounts (Md = 3 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Biester, H., Gosar, M., & Covelli, S. (2000). Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine. Slovenia. Environmental Science and Technology, 34(16), 3330–3336.

    Article  CAS  Google Scholar 

  • Biester, H., Gosar, M., & Müller, G. (1999). Mercury speciation in tailings of the Idrija mercury mine. Journal of Geochemistry Exploration, 65(3), 195–204.

    Article  CAS  Google Scholar 

  • Biester, H., Hess, A., & Müller, G. (1996). Investigations on different mercury-phases in soils of a Hg-mining area by a temperature-controlled-pyrolysis technique. In R. Reuter (Ed.), Geochemical approaches for the environmental engineering of metals (pp. 33–43). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Biester, H., & Nehrke, G. (1997). Quantification of mercury in soils and sediments: Acid digestion versus pyrolysis. Fresenius’ Journal of Analytical Chemistry, 358, 446–452.

    Article  CAS  Google Scholar 

  • Biester, H., & Scholz, C. (1996). Determination of mercury binding forms in soils: mercury pyrolysis versus sequential extraction. Environmental Science and Technology, 31(1), 233–239.

    Article  Google Scholar 

  • Burton, G. A, Jr. (2002). Sediment quality criteria in use around the world. Journal of Limnology, 3, 65–75.

    Article  CAS  Google Scholar 

  • Čar, J. (1998). Mineralized rocks and ore residues in the Idrija region. In V. Miklavčič (Ed.), Proceedings of the meeting of researchers entitled: Idrija as a natural and anthropogenic laboratory, Mercury as a major pollutant (pp. 10–15). Mercury mine Idrija: Idrija.

    Google Scholar 

  • Dizdarevič, T. (2001). The influence of mercury production in Idrija mine on the environment in the Idrija region and over a broad area. RMZ: Materials and Geoenvironment, 48(1), 56–64.

    Google Scholar 

  • EN ISO 14688-1:2002: Geotechnical investigation and testing—Identification and classification of soil: Part 1: Identification and description (ISO 14688-1:2002).

  • Feng, X., Lu, Y. J., Grègoire, D. C., Hao, Y., Banic, M. C., & Schroeder, H. W. (2004). Analysis of inorganic mercury species associated with airborne particulate matter/aerosols: Method development. Analytical and Bioanalytical Chemistry, 380(4), 683–689.

    Article  CAS  Google Scholar 

  • Gosar, M. (1997). Mercury in sediments and air as a reflection of Idrija mineralization and mining. Ljubljana: Dissertation University of Ljubljana.

    Google Scholar 

  • Gosar, M. (2008). Mercury in river sediment, floodplains and plants growing thereon in drainage area of Idrija mine Slovenia. Polish Journal of Environmental Studies, 17(2), 227–236.

    CAS  Google Scholar 

  • Gosar, M., & Čar, J. (2006). Influence of mercury ore roasting sites from sixteenth and seventeenth century on the mercury dispersion in surroundings of Idrija. Geologija, 49(1), 91–101. doi:10.5474/geologija.2006.007.

    Article  Google Scholar 

  • Gosar, M., Pirc, S., & Bidovec, M. (1997a). Mercury in the Idrijca River sediments as a reflection of mining and smelting activities of the Idrija mercury mine. Journal of Geochemical Exploration, 58, 125–131.

    Article  CAS  Google Scholar 

  • Gosar, M., Pirc, S., Šajn, R., Bidovec, M., Mashayanov, N. R., & Sholupov, S. E. (1997b). Distribution of mercury in the atmosphere over Idrija, Slovenia. Environonmental Geochemistry and Health, 19, 101–110.

    Article  CAS  Google Scholar 

  • Gosar, M., & Šajn, R. (2001). Mercury in soil and attic dust as a reflection of Idrija mining and mineralization (Slovenia). Geologija, 44(1), 137–159. doi:10.5474/geologija.2001.010.

    Google Scholar 

  • Gosar, M., Šajn, R., & Biester, H. (2006). Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Science of Total Environment, 369(1–3), 150–162.

    Article  CAS  Google Scholar 

  • Gosar, M., & Žibret, G. (2011). Mercury contents in the vertical profiles through alluvial sediments as a reflection of mining in Idrija (Slovenia). Journal of Geochemical Exploration, 110(2), 81–91.

    Article  CAS  Google Scholar 

  • Gray, J. E., Hines, M. E., Higueras, P. L., Adatto, I., & Lasorsa, B. K. (2004). Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almáden mining district, Spain. Environmental Science and Technology, 38, 4285–4292.

    Article  CAS  Google Scholar 

  • Hess, A. (1993). Verteilung, Mobilität und Verfügbarkeit von Hg Böden und Sedimenten am Beispiel zweier hochbelasteter Industriestandorte (Vol. 71). Heidelberg: Heidelberg Geowissenschaftliche Abhandlungen.

    Google Scholar 

  • Hojdová, M., Navrátil, T., & Rohovec, J. (2008). Distribution and speciation of mercury in mine waste dumps. Environmental Contamination and Toxicology, 80(3), 237–241.

    Article  CAS  Google Scholar 

  • Kavčič, I. (1974). Kakšna je stopnja onečiščenosti zraka v Idriji. Idrijski razgledi, 9(1–2), 25–29.

    Google Scholar 

  • Kavčič, I. (2008). Živo srebro: Zgodovina idrijskega žgalništva. Založba Bogataj: Idrija.

    Google Scholar 

  • Kocman, D., & Horvat, M. (2010). A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmospheric Chemistry and Physics, 9(6), 1417–1426.

    Article  Google Scholar 

  • Kocman, D., Kanduč, T., Ogrinc, N., & Horvat, M. (2011a). Distribution and partitioning of mercury in a river catchment impacted by former mercury mining activity. Biogeochemistry, 104, 183–201.

    Article  CAS  Google Scholar 

  • Kocman, D., Vreča, P., Fajon, V., & Horvat, M. (2011b). Atmospheric distribution and deposition of mercury in the Idirja Hg mine region Slovenia. Environmental research, 111(1), 1–9.

    Article  CAS  Google Scholar 

  • Kosta, L., Byrne, A. R., Zelenko, V., Stegnar, P., Dermelj, M., & Ravnik, V. (1974). Studies on the uptake, distribution and transformations of mercury in living organisms in the Idrija region and comparative areas. Vestnik slovenskega kemijskega društva, 21, 49–76.

    CAS  Google Scholar 

  • Kotnik, J., Horvat, M., & Dizdarevič, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region Slovenia. Atmospheric Environment, 39(38), 7570–7579.

    Article  CAS  Google Scholar 

  • Dean J.D., & Mason, PR (2009) Estimation of mercury bioaccumulation potential from wastewater treatment plants in receiving waters: Phase 1. Report No. 05-WEM-1CO, Water Environment Research Foundation, Alexandria (VA).

  • MHSPE: Ministry of Housing, Spatial Planning, and the Environment (2013) The New Dutch List. In: Intervention values and target values: Soil quality standards. Directorate general for environmental protection, Department of soil protection, The Hague, The Netherlands. http://www.contaminatedland.co.uk/std-guid/dutch-l.htm. Accessed 25 Apr 2013.

  • Mlakar I., & Čar J. (2009) Geological map of the Idrija: Cerkljansko hills between Stopnik and Rovte 1:25.000. Ljubljana, Geološki zavod Slovenije.

  • Mlakar I., & Čar J. (2010) Geological structure of the Idrija—Cerkljansko hills: Explanatory Book to the Geological map of the Idrija—Cerkljansko hills between Stopnik and Rovte 1:25.000. Ljubljana, Geološki zavod Slovenije.

  • Mulligan N.C., Fukue M., & Sato Y. (2009) Sediment Contamination and Sustainable Remediation. CRC Press.

  • Navarro, A. (2008). Review of characteristics of mercury speciation and mobility from areas of mercury mining in semi-arid environments. Reviews in Environmental Science and Bio/Technology, 7(4), 287–306.

    Article  CAS  Google Scholar 

  • NMSs: National Meteorological Service of Slovenia (2012) Ministry of Agriculture and Environment: Slovenian Environment Agency. http://meteo.arso.gov.si/met/sl/archive/. Accessed 27 Dec 2012.

  • Rytuba, J. J. (2003). Mercury from mineral deposits and potential environmental impact. Environmental Geology, 43(3), 326–338.

    CAS  Google Scholar 

  • Salminen R., Batista M.J., Bidovec M., Demetriades A., De Vivo B., De Vos W., Duris M., Gilucis A., Gregorauskiene V., Halamic J., Heitzmann P., Lima A., Jordan G., Klaver G., Klein P., Lis J., Locutura J., Marsina K., Mazreku A., O’Connor P.J., Olsson S.Å., Ottesen R.T., Petersell V., Plant JA., Reeder S., Salpeteur I., Sandström H., Siewers U., Steenfelt A., & Tarvainen T. (2005) Geochemical Atlas of Europe. Part 1- Background Information, Methodology and Maps. Geological survey of Finland.

  • Skyllberg, U. (2010). Mercury transformations in wetland soils in relation to C, S and Fe biogeochemistry. In R. J. Gilkes & N. Prakongkep (Eds.), Proceedings of the 19th world congress of soil science: Soil solutions for a changing world (pp. 44–47). Brisbane, Australia: International Union of Soil Sciences.

    Google Scholar 

  • Skyllberg U. (2011) Chemical speciation of mercury in soil and sediment. In: G. Liu, Y. Cai, N. O’Driscoll (Ed.) Environmental chemistry and toxicology of mercury (pp. 219–258). New Jersey, John Wiley & Sons.

  • Taylor, G. K., & Owens, N. P. (2009). Sediments in urban river basins: A review of sediment-contaminant dynamics in an environmental system conditioned by human activities. Journal of Soils and Sediments, 9, 281–303.

    Article  Google Scholar 

  • Teršič, T. (2010). Environmental influences of historical small scale ore processing at Idrija area. Ljubljana: Dissertation University of Ljubljana.

    Google Scholar 

  • Teršič, T., & Gosar, M. (2009). Preliminary results of detailed geochemical study of mercury at the ancient ore roasting site Pšenk (Idrija area, Slovenia). Geologija, 52(1), 79–86. doi:10.5474/geologija.2009.009.

    Article  Google Scholar 

  • Teršič, T., & Gosar, M. (2012). Comparison of elemental contents in earthworm cast and soil from a mercury-contaminated site (Idrija area, Slovenia). Science of Total Environment, 430, 28–33.

    Article  CAS  Google Scholar 

  • Teršič, T., Gosar, M., & Biester, H. (2011a). Environmental impact of ancient small-scale mercury ore processing at Pšenk on soil (Idrija area, Slovenia). Applied Geochemistry, 26(11), 1867–1876.

    Article  CAS  Google Scholar 

  • Teršič, T., Gosar, M., & Biester, H. (2011b). Distribution and speciation of mercury in soil in the area of an ancient mercury ore roasting site, Frbejžene trate (Idrija area, Slovenia). Journal of Geochemistry Exploration, 110(2), 136–145.

    Article  CAS  Google Scholar 

  • Wiener, J. G., & Suchanek, T. H. (2008). The basis for ecotoxicological concern in aquatic ecosystems contaminated by historical mercury mining. Ecological Applications, 18(8), A3–A11.

    Article  Google Scholar 

  • Žibret, G., & Gosar, M. (2005). What is the amount of mercury accumulated in the Idrijca River overbank sediments? Geologija, 48(1), 97–105. doi:10.5475/geologija.2005.009.

    Article  Google Scholar 

  • Žibret, G., & Gosar, M. (2006). Calculation of the mercury accumulation in the Idrijca River alluvial plain sediments. Science of Total Environment, 368(1), 291–297.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The presented study was funded by the Slovenian Research Agency (ARRS) in the frame of the research programme Groundwater and Geochemistry (P1-0020), which is performed by the Geological Survey of Slovenia. The authors would like to thank Vesna Miklavčič, Msc., director and Martin Kržišnik from Komunala Idrija for advices and good cooperation during sampling of urban sediments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Špela Bavec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bavec, Š., Biester, H. & Gosar, M. Urban sediment contamination in a former Hg mining district, Idrija, Slovenia. Environ Geochem Health 36, 427–439 (2014). https://doi.org/10.1007/s10653-013-9571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-013-9571-6

Keywords

Navigation