Skip to main content
Log in

Effects of vanadate supply on plant growth, Cu accumulation, and antioxidant capacities in Triticum aestivum L.

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The effects of normal vanadate (V) supply (40 μM) on copper (Cu) accumulation, plant growth and reduction in Cu toxicity in wheat seedlings (Triticum aestivum L.) were investigated. The results showed Cu accumulation (mg g−1 dw) in the applied V treatment was about 10.2 % in shoots and 16.7 % in roots higher up on exposure to excess Cu (300 μM) than that observed only in excess Cu plants. Compared with the treatment of the normal concentration used in Hoagland’s culture solution Cu (0.6 μM), excess Cu significantly induced lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (MDA). The seedlings showed apparent symptoms of Cu toxicity and plant growth were significantly inhibited by excess Cu. The applied V significantly decreased lipid peroxidation in roots caused by excess Cu and inhibited the appearance of Cu toxicity symptoms. Moreover, the applied V effectively improved the antioxidant defense system to alleviate the oxidative damage induced by Cu. Although the addition of V could promote superoxide dismutase in both shoots and roots to reduce superoxide radicals, peroxidase and catalase in shoots and ascorbate peroxidase and dehydroascorbate reductase in roots were major enzymes to eliminate H2O2 in wheat seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrade, S. A. L., Gratão, P. L., Azevedo, R. A., Silveira, A. P. D., Schiavinato, M. A., & Mazzafera, P. (2010). Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68, 198–207.

    Article  CAS  Google Scholar 

  • Anke, M. (2004). Vanadium—An element both essential and toxic to plants, animals and humans? Anales De La Real Academia Nacional De Farmacia, 70, 961–999.

    CAS  Google Scholar 

  • Barker, A. V., & Pilbeam, D. J. (Eds.). (2007). Handbook of plant nutrition. Boca Raton, FL: Taylor & Francis Group.

    Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  • Cestone, B., Quartacci, M. F., & Navari-Izzo, F. (2010). Uptake and translocation of CuEDDS complexes by Brassica carinata. Environmental Science and Technology, 44, 6403–6408.

    Article  CAS  Google Scholar 

  • Chen, C., Chen, Y., Tang, I., Liang, H., Lai, C., Chiou, J., et al. (2011). Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiology, 156, 2225–2234.

    Article  CAS  Google Scholar 

  • Chien, P., Mak, O., & Huang, H. (2006). Induction of COX-2 protein expression by vanadate in A549 human lung carcinoma cell line through EGF receptor and p38 MAPK-mediated pathway. Journal Biochemical and Biophysical Research Communications, 339, 562–568.

    Article  CAS  Google Scholar 

  • de Boer, T. E., Tas, N., Braster, M., Temminghoff, E. J. M., Röling, W. F. M., & Roelofs, D. (2012). The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation. Environmental Science and Technology, 46, 60–68.

    Article  Google Scholar 

  • Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Hölzer, R., & Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environmental and Experimental Botany, 52, 253–266.

    Article  CAS  Google Scholar 

  • Ding, M. (1999). Vanadate-induced activation of activator protein-1: Role of reactive oxygen species. Carcinogenesis, 20, 663–668.

    Article  CAS  Google Scholar 

  • Ding, Y., Chang, C., Luo, W., Wu, Y., Ren, X., Wang, P., et al. (2008). High potassium aggravates the oxidative stress induced by magnesium deficiency in rice leaves. Pedosphere, 18, 316–327.

    Article  CAS  Google Scholar 

  • Gaier, E. D., Kleppinger, A., Ralle, M., Mains, R. E., Kenny, A. M., & Eipper, B. A. (2012). High serum Cu and Cu/Zn ratios correlate with impairments in bone density, physical performance and overall health in a population of elderly men with frailty characteristics. Experimental Gerontology, 47, 491–496.

    Google Scholar 

  • Gao, S., Ou-yang, C., Tang, L., Zhu, J., Xu, Y., Wang, S., et al. (2010). Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. Journal of Hazardous Materials, 182, 591–597.

    Article  CAS  Google Scholar 

  • Gao, S., Yan, R., Cao, M., Yang, W., Wang, S., & Chen, F. (2008). Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant, Soil and Environment, 54, 117–122.

    CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  Google Scholar 

  • Gourdon, P., Liu, X. Y., Skjorringe, T., Morth, J. P., Moller, L. B., Pedersen, B. P., et al. (2011). Crystal structure of a copper-transporting PIB-type ATPase. Nature, 475, 59–64.

    Article  CAS  Google Scholar 

  • Hall, J. L., & Williams, L. E. (2003). Transition metal transporters in plants. Journal of Experimental Botany, 54, 2601–2613.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–327.

    Google Scholar 

  • Khatun, S., Ali, M. B., Hahn, E. J., & Paek, Y. (2008). Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany, 64, 279–285.

    Article  CAS  Google Scholar 

  • Lin, C. W., Lin, C. Y., Chang, C. C., Lee, R. H., Tsai, T. M., Chen, P. Y., et al. (2009). Early signalling pathways in rice roots under vanadate stress. Plant Physiology and Biochemistry, 2009(47), 369–376.

    Article  Google Scholar 

  • Martins, L. L., & Mourato, M. M. (2006). Effect of excess copper on tomato plants (Lycopersicon esculentum Mill.): Growth parameters, enzyme activities. Journal of Plant Nutrition, 29, 2179–2198.

    Article  CAS  Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R. D., Govindarajan, R., Kuriakose, S. V., & Arasad, M. N. V. (2006). Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiology and Biochemistry, 44, 25–37.

    Article  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Breusegem, F. V. (2004). The reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • O’neill, S. D., & Spanswick, R. M. (1984). Effects of vanadate on the plasma membrane ATPase of red beet and corn. Plant Physiology, 75, 586–591.

    Article  Google Scholar 

  • Palmgren, M. G., & Nissen, P. (2011). P-type ATPases. Annual Review of Biophysics, 40, 243–266.

    Article  CAS  Google Scholar 

  • Shan, C., Dai, H., & Sun, Y. (2012). Hydrogen sulfide protects wheat seedlings against copper stress by regulating the ascorbate and glutathione metabolism in leaves. Australian Journal of Crop Science, 6, 248–254.

    CAS  Google Scholar 

  • Singh, P. K., & Tewari, R. K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24, 107–112.

    CAS  Google Scholar 

  • Soliozi, M., & Odermatt, A. (1995). Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. Journal of Biological Chemistry, 270, 9217–9221.

    Article  Google Scholar 

  • Srivastava, S., & Souza, S. F. D. (2010). Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicology and Environmental Safety, 73, 1314–1322.

    Article  CAS  Google Scholar 

  • Suttle, N. F. (eds). (2010). Mineral nutrition of livestock (4th Revised ed.). CABI, India.

  • Vachirapatama, N., Jirakiattikul, Y., Dicinoski, G., Townsend, A. T., & Haddad, P. R. (2011). Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin Journal of Science and Technology, 33, 255–261.

    CAS  Google Scholar 

  • Zaccone, C., Di Caterina, R., Rotunno, T., & Quinto, M. (2012). Soil—Farming system—Food—Health: Effect of conventional and organic fertilizers on heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) content in semolina samples. Soil and Tillage Research, 107, 97–105.

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Natural Science Foundation of China (Grant No. 21007003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, T., You, L. et al. Effects of vanadate supply on plant growth, Cu accumulation, and antioxidant capacities in Triticum aestivum L.. Environ Geochem Health 35, 585–592 (2013). https://doi.org/10.1007/s10653-013-9541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-013-9541-z

Keywords

Navigation