Skip to main content
Log in

Effect of insecticides alone and in combination with fungicides on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The effect of selected pesticides, monocrotophos, chlorpyrifos alone and in combination with mancozeb and carbendazim, respectively, was tested on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils. The oxidation of ammonical nitrogen was significantly enhanced under the impact of selected pesticides alone and in combinations at 2.5 kg ha−1 in black soil, and furthermore, increase in concentration of pesticides decreased the rate of nitrification, whereas in the case of red soil, the nitrification was increased up to 5.0 kg ha−1 after 4 weeks, and then decline phase was started gradually from 6 to 8 weeks of incubation. The activity of phosphatase was increased in soils, which received the monocrotophos alone and in combination with mancozeb up to 2.5 and 5.0 kg ha−1, whereas the application of chlorpyrifos singly and in combination with carbendazim at 2.5 kg ha−1 profoundly increased the phosphatase activity after 20 days of incubation, in both soils. But higher concentrations of pesticides were either innocuous or inhibitory to the phosphatase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, M. (1977). Introduction to soil microbiology (2nd ed., pp. 113–330). New York: Wiley.

    Google Scholar 

  • Barnes, H., & Folkard, B. R. (1951). The determination of nitrite. Analyst, 76, 599–603.

    Article  CAS  Google Scholar 

  • Caceres, T., Wenxiang, H., Megharaj, M., & Naidu, R. (2009). Effect of insecticide fenomiphos on soil microbial activities in Australian and Ecuadorean soils. Journal of Environmental Science and Health Part B, 44(1), 13–17.

    Article  CAS  Google Scholar 

  • Chu, X. F., Hua, P., Xuedong, W., Xiao, S., Min, F. Bo., & Yunlong, Y. (2008). Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. Journal of Environmental Sciences, 20, 464–469.

    Article  CAS  Google Scholar 

  • Cycon, M., Piotrowska-Seget, Z., Kaczynska, A., & Kozdroj, J. (2006). Microbiological characteristics of a loamy sand soil exposed to tebuconazole and λ-cyhalothrin under laboratory conditions. Ecotoxicology, 15(8), 639–646.

    Article  CAS  Google Scholar 

  • Cycon, M., Piotrowska-Seget, Z., & Kozdroj, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration & Biodegradation., 64, 316–323.

    Article  CAS  Google Scholar 

  • Das, A. C., & Mukherjee, D. (1994). Effect of insecticides on the availability of nutrients, nitrogen fixation, and phosphate solubility in the rhizosphere soil of rice. Biology and Fertility of Soils, 18, 37–41.

    Article  CAS  Google Scholar 

  • Fenchel, T., King, G. M., & Blackburn, T. H. (1998). Bacterial biogeochemistry : The ecophysiology of Mineral Cycling, 2nd edition, Academic Press, pp. 201–204.

  • Getenga, Z. M., Jondiko, J. I. O., Wandiga, S. O., & Beck, E. (2000). Dissipation behavior malthion and dimethoate residues from the soil and their uptake by garden pea (Pisum sativum). Bulletin of Environmental Contamination and Toxicology, 64(3), 359–367.

    Article  CAS  Google Scholar 

  • Getenga, N. C., & Weil, R. R. (2006). Elements of the nature and properties of soils (p. 5). Prentice Hall: Englewood Cliffs.

    Google Scholar 

  • Giraddi, R. S., Lingappa, S., & Hegde, R. (1999). Bioefficacy of new wettable powders on leaf eating caterpillars of groundnut. Pestol, 23(7), 57–59.

    Google Scholar 

  • Graebing, P., Frank, M., & Chib, J. S. (2002). Effects of fertilizer and soil components on pesticide photolysis. Journal of Agricultural Food and Chemistry, 50, 7332–7339.

    Article  CAS  Google Scholar 

  • Guha, P., & Chandrasekhar, S. C. (2001). Efficacy and residues studies of propiconazole 25% EC in groundnut. Pestalogy, 23(7), 57–59.

    Google Scholar 

  • Gundi, V. A. K. B., Narasimha, G., & Reddy, B. R. (2005). Interaction effects of soil insecticides on microbial populations and dehydrogenase activity in a black clay soil. Journal of Environmental Science and Health, 40, 269–281.

    Google Scholar 

  • Gundi Vijay, A. K. B., Naraharikumar, V., & Reddy, B. R. (2006). Effect of insecticides on nitrogen mineralization and nitrifying organisms in a black vertisol soil. Indian Journal of Microbiology, 46(2), 129–134.

    Google Scholar 

  • Hansson, G. B., Klemedtsson, L., Stenstorm, J., & Torstensson, L. (1991). Testing the influence of chemicals on soil autotrophic ammonium oxidation. Environmental Toxicology and Water Quality, 6, 351–360.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1971). Soil chemical analysis. New Delhi: Prentice Hall India.

    Google Scholar 

  • Jaya Madhuri, R., & Rangaswamy, V. (2009). Biodegradation of selected insecticides by Bacillus and Pseudomonas sps. in groundnut fields. Toxicology International, 16(2), 127–132.

    Google Scholar 

  • Kinney, C. A., Mandernack, K. W., & Mosier, A. R. (2005). Laboratory investigations into the effects of the pesticides mancozeb, chlorothalonil, and prosulfuron on nitrousoxide and nitric oxide production in fertilized soil. Soil Biology and Biochemistry, 37, 837–850.

    Article  CAS  Google Scholar 

  • Lodhi, A. M., Malik, N., & Azam, F. (1994). Effect of baythroid on nitrogen transformations in soil. Biology and Fertility of Soils, 197, 173–176.

    Article  Google Scholar 

  • Man, L., & Zucong, C. (2009). Effects of chlorothalonil and carbendazim on nitrification and denitrification in soils. Journal of Environmental Sciences, 21, 458–467.

    Article  Google Scholar 

  • Mazellier, P., Leroy, E., Laat, J. T., & Legube, B. (2003). Degradation of carbendazim by UV/H2O2 investigated bykinetic modeling. Environmental Chemistry Letters, 1, 68–72.

    Article  CAS  Google Scholar 

  • Megharaj, M., Kookana, K., & Singleton, S. (1999). Activities of fenamiphos on native algae population and some enzyme activities in soil. Soil Biology and Biochemistry, 39, 1549–1553.

    Article  Google Scholar 

  • Monkiedje, A., Llori, M. O., & Spiteller, M. (2002). Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology and Biochemistry, 34, 1939–1948.

    Article  CAS  Google Scholar 

  • Nazima, R., & Zafar, R. A. (2010). Effect of the fungicide mancozeb at different application rates on enzyme activities in a silt loam soil of the Kashmir Himalaya, India. Tropical Ecology, 51(2), 199–205.

    Google Scholar 

  • Pell, M., Stenberg, B., & Torstensson, L. (1998). Potential denitrifacation and nitrification tests for evaluation of pesticide effects in soil. Ambio, 27(1), 24–28.

    Google Scholar 

  • Piotrowska, S. Z., Engel, R., Nowak, E., & Kozdroj, J. (2008). Sucessive soil treatment with captan or oxytetracycline affects non-target microorganisms. World Journal of Microbiology & Biotechnology, 24, 2843–2848.

    Article  Google Scholar 

  • Posen, S. (1967). Alkaline phosphatase. Annals of Internal Medicine, 67, 183–203.

    CAS  Google Scholar 

  • Rahmansyah, M., Antonius, S., & Sulistinah, N. (2009). Phosphatase and urease instability caused by pesticides present in soil improved by grounded rice straw. ARPN Journal of Agricultural and Biological Science, 4(2), 56–62.

    Google Scholar 

  • Rangaswamy, V., & Venkateswarlu, K. (1990). Stimulation of ammonification and nitrification in soils by the insecticides, monocrotophos and quinalphos. Biomedical and Environmental Sciences, 3, 391–396.

    CAS  Google Scholar 

  • Rangaswamy, V., & Venkateswarlu, K. (1993). Ammonification and nitrification in soils, and nitrogen fixation by Azospirillum sp. as influenced by cypermethrin and fenvalerate. Agriculture, Ecosystems & Environment, 45, 311–317.

    Article  CAS  Google Scholar 

  • Rangaswamy, V., & Venkateswarlu, K. (1996). Phosphatase activity in groundnut soils as influenced by selected insecticides. Journal of Environmental Biology, 17, 115–119.

    CAS  Google Scholar 

  • Ranney, T. A., & Bartlett, R. J. (1972). Rapid field determination of nitrate in natural waters. Communications in Soil Science and Plant Analysis, 3, 183–186.

    Article  CAS  Google Scholar 

  • Saison, C., Natasha, J. W., Anu, K., & Rai, S. K. (2009). Effect of thiobencarb in combination with molinate and chlorpyrifos on selected soil microbial processes. Journal of Environmental Science and Health Part B, 44, 226–234.

    Article  CAS  Google Scholar 

  • Schneider, K., Turrion, M.-B., Grierson, B. F., & Gallardo, J. F. (2001). Phosphatase activity, microbial phosphorus, and fine root growth in forest soil in the Sierra de Gata, western central Spain. Biology and Fertility Soils, 34, 151–155.

    Article  CAS  Google Scholar 

  • Sha, J. J. (1999). A manual of industrial and chemical production: agricultural chemicals (pp. 13–14). Beijing: Chemical Industry Press.

    Google Scholar 

  • Shin, C. L., Funke, B. R., & Schulz, J. T. (1972). Effects of some organophosphate and carbamate insecticides on nitrification and legume growth. Plant and Soil, 37, 489–496.

    Article  Google Scholar 

  • Shukla, A. K., & Mishra, R. R. (1997). Influence of herbicides on microbial population and enzyme activities in potato (Solanum tuberosum) field soil. Indian Journal of Agricultural Science, 67, 610–611.

    CAS  Google Scholar 

  • Sikora, L. J., Kaufman, D. D., & Horng, L. C. (1990). Enzyme activity in soils showing enhanced degradation of organophosphate insecticides. Biology and Fertility of Soils, 9, 14–18.

    Article  CAS  Google Scholar 

  • Sousa, P. J., Rodrigues, J. M., Loureiro, L. S., Soares, A. M. V. M., Jones, S. E., & Forster, B. (2004). Ring–Testing and field–validation of a terrestrial model ecosystem (TME)–an instrument for testing potentially harmful substances: Effects of carbendazim on soil microbial parameters. Ecotoxicology, 13, 43–60.

    Article  Google Scholar 

  • Tabatabai, M.A. (1994). Soil enzymes. In: Mickelson, J.M. Bigham (Eds.).Methods of soil analysis. Part 2. Microbial and Biochemical properties, Soil Science Society of America Journanl. Madison, Wisconsin, pp. 775–826.

  • Tu, C. M. (1990). Effect of four experimental insecticides on enzyme activities and levels of adenosine in mineral and organic soils. Journal of Environmental Science and Health Part B, 25, 787–800.

    Article  Google Scholar 

  • Tu, C. M., Marks, C. F., & Elliot, J. M. (1996). Effects of nematicides on pratylenchus penetrans, soil nitrification and growth of flue cured tobacco. Bulletin of Environmental Contamination and Toxicology, 57, 924–931.

    Article  CAS  Google Scholar 

  • Vonk, J. W. (1991). Testing of pesticides for side effects on nitrogen for side-effects on nitrogen conversions in soil. Toxicology and Environmental Chemistry, 30, 241–248.

    Article  CAS  Google Scholar 

  • Xie, X. M., Liao, M., Huanq, C. Y., Liu, W. P., & Abid, S. (2004). Effects of pesticides on soil biochemical characteristics of paddy soil. Journal of Environmental Sciences, 16(2), 252–255.

    CAS  Google Scholar 

  • Yan, H., Danden, W., Dong, B., Feifan, T., Baichuan, W., Hua, F., et al. (2011). Dissipation of carbendazim and chloramphenicol alone and combination and heir effects on soil fungal:bacterial ratios and soil enzyme activities. Chemosphere,. doi:10.1016/j.Chemosphere.2011.03.038.

    Google Scholar 

  • Yun Long, Y. U., Min, S., Hua, F., Xiao, W., & Xiao, Q. C. (2006). Responses of soil microorganisms and enzymes to repeated application of chlorothalonil. Journal of Agricultural and Food Chemistry, 54, 10070–10075.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the University Grants commission (UGC), New Delhi, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Srinivasulu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasulu, M., Mohiddin, G.J., Subramanyam, K. et al. Effect of insecticides alone and in combination with fungicides on nitrification and phosphatase activity in two groundnut (Arachis hypogeae L.) soils. Environ Geochem Health 34, 365–374 (2012). https://doi.org/10.1007/s10653-011-9399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9399-x

Keywords

Navigation