Skip to main content
Log in

Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Incidental soil ingestion is a common contaminant exposure pathway for humans, notably children. It is widely accepted that the inclusion of total soil metal concentrations greatly overestimates the risk through soil ingestion for people due to contaminant bioavailability constraints. The assumption also assumes that the contaminant distribution and the bioaccessible fraction is consistent across all particle sizes. In this study, we investigated the distribution of arsenic across five particle size fractions as well as arsenic bioaccessibility in the <250-, <100-, <10- and 2.5-μm soil particle fractions in 50 contaminated soils. The distribution of arsenic was generally uniform across the larger particle size fractions but increased markedly in the <2.5-μm soil particle fraction. The marked increase in arsenic concentration in the <2.5-μm fraction was associated with a marked increase in the iron content. Arsenic bioaccessibility, in contrast, increased with decreasing particle size. The mean arsenic bioaccessibility increased from 25 ± 16% in the <250-μm soil particle fraction to 42 ± 23% in the <10-μm soil particle fraction. These results indicate that the assumption of static arsenic bioaccessibility values across particle size fractions should be reconsidered if the ingested material is enriched with small particle fractions such as those found in household dust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Basta, N. T., Rodriguez, R. R., & Casteel, S. W. (2001). Bioavailability and risk of arsenic exposure by the soil ingestion pathway. In W. T. Frankenberger Jr. (Ed.), Environmental chemistry of arsenic. New York: Marcel Dekker.

    Google Scholar 

  • Belluck, D. A., Benjamin, S. L., Baveye, P., Sampson, J., & Johnson, B. (2003). Widespread arsenic contamination of soils in residential areas and public spaces: An emerging regulatory or medical crisis? International Journal of Toxicology, 22, 109–128.

    Article  CAS  Google Scholar 

  • Bright, D. A., Richardson, G. M., & Dodd, M. (2006). Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? I: A discussion of soil particle size and contaminant partitioning in soil. Human and Ecological Risk Assessment, 12, 591–605.

    Article  CAS  Google Scholar 

  • Cai, Y., Cabrera, J. C., Georgiadis, M., & Jayachandran, K. (2002). Assessment of arsenic mobility in the soils of some golf courses in South Florida. The Science of the Total Environment, 291, 123–134.

    Article  CAS  Google Scholar 

  • Duggan, M. J., Inskip, M. J., Rundle, S. A., & Moorcroft, J. S. (1985). Lead in playground dust and on the hands of schoolchildren. The Science of the Total Environment, 44, 65–79.

    Article  CAS  Google Scholar 

  • Edwards, R. D., Yurkow, E. J., & Lioy, P. J. (1998). Seasonal deposition of housedusts onto household surfaces. The Science of the Total Environment, 224, 69–80.

    Article  CAS  Google Scholar 

  • Ellice, M. C., Dowling, K., Smith, J., Smith, E., & Naidu, R. (2001). Abandoned mine tailings with high arsenic concentrations: A case study with implications for regional Victoria. In Proceedings of arsenic in the Asia-Pacific region: Managing arsenic for our future (p. 124), 20–23 Nov 2001, Adelaide, South Australia.

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In Klute, A. (Ed.), Methods of soil analysis. Part 1. Agronomy Monograph 9 (2nd ed., pp. 383–411). Madison, WI: ASA and SSSA.

  • Hund-Rinke, K., & Kördel, W. (2003). Underlying issues in bioaccessibility and bioavailability: Experimental methods. Ecotoxicology and Environmental Safety, 56, 52–62.

    Article  CAS  Google Scholar 

  • Hunt, A., Johnson, D. L., Thornton, I., & Watt, J. M. (1993). Apportioning the sources of lead in house dusts in the London Borough of Richmond, England. The Science of the Total Environment, 138, 183–206.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007a). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated coils. Chemosphere, 69, 961–966.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007b). In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 69, 69–78.

    Article  CAS  Google Scholar 

  • Kelley, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Columbus, OH: Battelle Press.

    Google Scholar 

  • Laird, B. D., van de Wiele, T. R., Corriveau, M., Jamieson, H. E., Parsons, M. B., Verstraete, W., et al. (2007). Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the simulator of the human intestinal microbial system. Environmental Science & Technology, 41, 5542–5547.

    Article  CAS  Google Scholar 

  • Lanphear, B. P., & Roghmann, K. L. (1997). Pathways of lead exposure in urban children. Environmental Research, 74, 67–73.

    Article  CAS  Google Scholar 

  • Lien, H. C., Tsai, T. F., Lee, Y. Y., & Hsiao, C. H. (2001). Merkel cell carcinoma and chronic arsenicism. Journal of American Academy of Dermatology, 41, 641–643.

    Google Scholar 

  • Lioy, P. J., Freeman, N. C. G., & Millette, J. R. (2002). Dust: A metric for use in residential and building exposure assessment and source characterization. Environmental Health Perspectives, 110, 969–983.

    CAS  Google Scholar 

  • Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, and Soil Pollution, 124, 319–332.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • McLaren, R. G., Naidu, R., Smith, J., & Tiller, K. G. (1998). Fractionation and distribution of arsenic in soils contaminated by cattle dip. Journal of Environment Quality, 27, 348–354.

    CAS  Google Scholar 

  • Mukerjee, D. (1998). Assessment of risk from multimedia exposures of children to environmental chemicals. Journal of the Air & Waste Management Association, 48, 483–501.

    CAS  Google Scholar 

  • NEPC (National Environmental Protection Council). (1999). National environmental protection measure for the assessment of site contamination, Schedule B1 (pp. 1–12). Adelaide, Australia: National Environmental Protection Council Service Corporation.

  • Pouschat, P., & Zagury, G. J. (2006). In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environmental Science & Technology, 40, 4317–4323.

    Article  CAS  Google Scholar 

  • Roberts, S. M. (2004). Incorporating information on bioavailability of soil-bourne chemicals into human health risk assessments. Human and Ecological Risk Assessment, 10, 631–635.

    Article  CAS  Google Scholar 

  • Rodriguez, R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soil and solid media. Environmental Science & Technology, 33, 642–649.

    Article  CAS  Google Scholar 

  • Rodriguez, R. E., Basta, N. T., Ward, D. C., Casteel, S. W., & Pace, L. W. (2003). Chemical extraction methods to assess bioavailable As in contaminated soil and solid media. Journal of Environment Quality, 32, 876–884.

    Article  CAS  Google Scholar 

  • Ruby, M. V. (2004). Bioavailability of soil-borne chemicals: Abiotic assessment tools. Human and Ecological Risk Assessment, 10, 647–656.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Simon, D. L., Maynard, E. J., & Thomas, K. D. (2007). Living in a sea of lead—changes in blood- and hand-lead of infants living near a smelter. Journal of Exposure Science and Environmental Epidemiology, 17, 248–259.

    Article  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1999). Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils. Journal of Environment Quality, 28, 1719–1726.

    CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (2002). Chemistry of inorganic arsenic in soils: II. Effect of P, Na and Ca. Journal of Environment Quality, 31, 557–563.

    CAS  Google Scholar 

  • Smith, E., Smith, J., Smith, L., Biswas, T., Correll, R., & Naidu, R. (2003). Arsenic in Australian environment: An overview. Journal of Environmental Science and Health Part A, A38, 223–239.

    Article  CAS  Google Scholar 

  • Smith, E., Smith, J., & Naidu, R. (2006). Distribution and nature of arsenic along former railway corridors of South Australia. The Science of the Total Environment, 363, 175–182.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., Weber, J., & Juhasz, A. L. (2008). The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Chemosphere, 71, 773–780.

    Article  CAS  Google Scholar 

  • Subacz, J. L., Barnett, M. O., Jardine, P. M., & Stewart, M. A. (2007). Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments. Journal of Environmental Science and Health Part A, 42, 1317–1329.

    Article  CAS  Google Scholar 

  • Tang, X. Y., Zhu, Y. G., Shan, X. Q., McLaren, R., & Duan, J. (2007). The ageing effect on bioaccessibility and fractionation of arsenic in soils from China. Chemosphere, 66, 1183–1190.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., & Shibata, Y. (2006). Size distributions of soil particles adhered to children’s hands. Archives of Environmental Contamination and Toxicology, 51, 157–163.

    Article  CAS  Google Scholar 

  • Yang, J. K., Barnett, M. O., Jardine, P. M., Basta, N. T., & Casteel, S. W. (2002). Adsorption, sequestration, and bioaccessibility of As(V) in soils. Environmental Science & Technology, 36, 4562–4569.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment and the University of South Australia for making this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E., Weber, J. & Juhasz, A.L. Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Environ Geochem Health 31 (Suppl 1), 85–92 (2009). https://doi.org/10.1007/s10653-009-9249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9249-2

Keywords

Navigation