Skip to main content

Advertisement

Log in

Biogeochemical transfer and dynamics of iodine in a soil–plant system

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Radioactive iodide (125I) is used as a tracer to investigate the fate and transport of iodine in soil under various leaching conditions as well as the dynamic transfer in a soil–plant (Chinese cabbage) system. Results show that both soils (the paddy soil and the sandy soil) exhibit strong retention capability, with the paddy soil being slightly stronger. Most iodine is retained by soils, especially in the top 10 cm, and the highest concentration occurs at the top most section of the soil columns. Leaching with 1–2 pore volume water does not change this pattern of vertical distributions. Early breakthrough and long tailing are two features observed in the leaching experiments. Because of the relatively low peak concentration, the early breakthrough is really not an environmental concern of contamination to groundwater. The long tailing implies that the retained iodine is undergoing slow but steady release and the soils can provide a low but stable level of mobile iodine after a short period. The enrichment factors of 125I in different plant tissues are ranked as: root > stem > petiole > leaf, and the 125I distribution in the young leaves is obviously higher than that in the old ones. The concentrations of 125I in soil and Chinese cabbage can be simulated with a dual-chamber model very well. The biogeochemical behaviors of iodine in the soil-cabbage system show that cultivating iodized cabbage is an environmentally friendly and effective technique to eliminate iodine deficiency disorders (IDD). Planting vegetables such as cabbage on the 129I-contaminated soil could be a good remediation technique worthy of consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cao, X. Y., Jiang, X. M., Kareem, A., Dou, Z. H., Rakeman, M. A., Zhang, M. L., et al. (1994). Iodination of irrigation water as a method of supplying iodine to a severely iodine-deficient population in Xinjiang, China. Lancet, 344, 107–110. doi:10.1016/S0140-6736(94)91286-6.

    Article  CAS  Google Scholar 

  • Chi, X. Z. (1993). Trace element and body health (pp. 205–206). Beijing: Chemical Industry Press.

    Google Scholar 

  • Delange, F. (1998). Risks and benefits of iodine supplementation. Lancet, 351, 923–924.

    CAS  Google Scholar 

  • Delange, F., de Benoist, B., Pretell, E., & Dunn, J. T. (2001). Iodine deficiency in the world: where do we stand at the turn of the century? Thyroid, 11, 437–447. doi:10.1089/105072501300176390.

    Article  CAS  Google Scholar 

  • DeLong, G. R., Leslie, P. W., Wang, S. H., Jiang, X. M., Zhang, M. L., Rakeman, M. A., et al. (1997). Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. Lancet, 350, 771–773. doi:10.1016/S0140-6736(96)12365-5.

    Article  CAS  Google Scholar 

  • Fordyce, F. M., Stewart, A. G., Ge, X., Jiang, J. -J., & Cave, M. (2003). Environmental Controls in IDD: A case study in the Xinjiang Province of China. British Geological Survey Technical Report, CR/01/45 N. Keyworth, Nottingham, UK.

  • Frissel, M. L., & van Bergeijk, K. E. (1989). Mean transfer values derived by simple statistical regression analysis, sixth report of IUR working group on soil–to–plant transfer factors. Bilthoven: RIVM.

    Google Scholar 

  • Fuhrmann, M., Bajt, S., & Schoonen, M. A. A. (1998). Sorption of iodine on minerals investigated by X-ray absorption near edge structure(XANES) and 125I tracer sorption experiments. Applied Geochemistry, 13, 127–141. doi:10.1016/S0883-2927(97)00068-1.

    Article  CAS  Google Scholar 

  • Hu, Q., Zhao, P., Moran, J. E., & Seaman, J. C. (2005). Sorption and transport of iodine species in sediments from the Savannah River and Hanford sites. Journal of Contaminant Hydrology, 78, 185–205. doi:10.1016/j.jconhyd.2005.05.007.

    Article  CAS  Google Scholar 

  • International Council for the Control of Iodine Deficiency Disorders (ICCIDD). (1999). Environmental controls in IDD—What do we really know? IDD Newsletter, 15(1), 56–57.

    Google Scholar 

  • Jiang, X. M., Cao, X. Y., Jiang, J. Y., Ma, T., James, D. W., Rakeman, M. A., et al. (1997). Dynamics of environmental supplementation of iodine: Four years’ experience of iodination of irrigation water in Hotien, Xinjiang, China. Archives of Environmental Health, 52, 399–408.

    Article  CAS  Google Scholar 

  • Johnson, C. C., Fordyce, F. M., & Stewart, A. G. (2003). Environmental controls in iodine deficiency disorders project summary report. British Geological survey commissioned report CR/03/058 N.BGS, Keyworth, Nottingham, UK.

  • Keppler, F., Biester, H., Putschew, A., Silk, P. J., Scholer, H. F., & Muller, G. (2003). Organoiodine formation during humification in peatlands. Environmental Chemistry Letters, 1, 219–223. doi:10.1007/s10311-003-0044-5.

    Article  CAS  Google Scholar 

  • Longombe, A. O., & Geelhoed, G. W. (1997). Iodine deficiency disorders and infertility in Northeast Zaïre. Nutrition (Burbank, Los Angeles County, Calif.), 13, 342–343. doi:10.1016/S0899-9007(97)83057-2.

    CAS  Google Scholar 

  • Mark, W. B. (1936). The influence of commercial fertilizers, potassium iodide, and soil acidity on the iodine content of certain vegetables. Journal of Agricultural Research, 53, 789–800.

    Google Scholar 

  • Muramatsu, Y., Uchida, S., Sumiya, Y., Ohmomo, Y., & Obata, H. (1989). Trace experiments on transfer of radio-iodine in the soil–rice plant system. Water, Air, and Soil Pollution, 45, 157–171.

    Google Scholar 

  • Ng, Y. C. (1982). A review of transfer factors for assessing the dose from radionuclides in agricultural products. Nuclear Safety, 23, 57–71.

    CAS  Google Scholar 

  • Robens, E., Hauschild, J., & Auman, D. C. (1988). Iodine-129 in the environment of a nuclear fuel reprocessing plant: III. Soil–to–plant concentration factors for iodine-129 and iodine-127 and their transfer factors to milk, eggs and pork. Journal of Environmental Radioactivity, 8, 37–52. doi:10.1016/0265-931X(88)90013-6.

    Article  CAS  Google Scholar 

  • Saenko, G. N., Kravtsova, Y. Y., Ivanenko, V. V., & Sheludko, S. I. (1978). Concentration of iodine and bromine by plants in the seas of Japan and Okhotsk. Marine Biology (Berlin), 47, 243–250. doi:10.1007/BF00541002.

    Article  Google Scholar 

  • Shaohua, W., & DeLong, G.R. (2000). The final report of the expanded iodine dripping project in Xinjiang Uygur autonomous region 1997–1999: Urumchi, Xinjiang Health Bureau.

  • Shinonaga, T., Gerzabek, M. H., Strebl, F., & Muramatsu, Y. (2001). Transfer of iodine from soil to cereal grains in agricultural areas of Austria. The Science of the Total Environment, 267, 33–40. doi:10.1016/S0048-9697(00)00764-6.

    Article  CAS  Google Scholar 

  • Tikhomirov, F. A., Kasparov, S. V., Prister, B. S., et al. (1980). Role of organic matter in iodine fixation in soils. Soviet Soil Science, 12(1), 64–72.

    Google Scholar 

  • Turin, H. J., Groffman, A. R., Wolfsberg, L. E., Roach, J. L., & Strietelmeier, B. A. (2002). Tracer and radionuclide sorption to vitric tuffs of Busted Butte, Nevada. Applied Geology, 17, 825–836. doi:10.1016/S0883-2927(02)00042-2.

    CAS  Google Scholar 

  • Whitehead, D. C. (1984). The distribution and transformation of iodine in the environment. Environment International, 10, 321–339. doi:10.1016/0160-4120(84)90139-9.

    Article  CAS  Google Scholar 

  • Zheng, B.-S., Wang, B.-B., Zhu, G.-W., & Yu, X.-Y. (2001). Environmental geochemistry of iodine in atmosphere and plant: review and a hypothesis. Earth Science Frontiers, 8, 359–365.

    CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (Grant No. 40373043). Two anonymous reviewers are thanked for their useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Xin Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, HX., Yan, AL., Hong, CL. et al. Biogeochemical transfer and dynamics of iodine in a soil–plant system. Environ Geochem Health 31, 401–411 (2009). https://doi.org/10.1007/s10653-008-9193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9193-6

Keywords

Navigation