Skip to main content
Log in

Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Puan Coalfield, southwestern Guizhou, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The concentration, mode of occurrence, and origin of trace elements in the Late Permian coals from the Puan Coalfield, southwestern Guizhou, China, were examined using inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence (XRF), cold-vapor atomic absorption spectrometry (CV-AAS), ion-selective electrode method (ISE), sequential chemical extraction procedure (SCEP), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), and optical microscope. Results show that minerals in the No. 2 Coal from the Puan Coalfield were mainly made up of epigenetic pyrite of low-temperature hydrothermal fluid origin and kaolinite of detrital terrigenous origin. Elements including As (36.9 µg/g), Cd (10.2 µg/g), Cr (167.3 µg/g), Cu (365.4 µg/g), Hg (2.82 µg/g), Mo (92.6 µg/g), Ni (82.6 µg/g), Pb (184.6 µg/g), Se (6.23 µg/g), Zn (242.3 µg/g), and U (132.7 µg/g) are significantly enriched in the No. 2 Coal from the Puan Coalfield. However, concentrations of trace elements in the other four coals, the No. 1, No. 8, No. 11, and No. 18 Coals, were close to the usual ranges found for Guizhou of China, China, and USA. Results of SEM-EDX and SCEP showed that As, Cd, Hg, Mo, Ni, Pb, and Zn occur mainly in veined pyrite, while Cr, Cu, and U distribute mainly in kaolinite, indicating that the low-temperature hydrothermal fluid and detrital materials of terrigenous origin are the main contributors to the enrichment of these trace elements in the No. 2 Coal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouška, V., Pešek, J., & Sykorova, I. (2000). Probable modes of occurrence of chemical elements in coal. Acta Montana, Ser. B. Fuel, Carbon, Mineral Process, raha, 10 (117), 53–90.

    Google Scholar 

  • Cavender , P. F., & Spears D. A. (1995). Analysis of forms of sulfur within coal, and minor and trace element associations with pyrite by ICP analysis of extraction solutions. In J. A. Pajares, J. M. D Tascon (Eds.), Coal Science, Vol. II. Coal Sci. Technol., vol. 24. Amsterdam: Elsevier, pp. 1653–1656.

  • Chou, C.-L. (1997). Geological factors affecting the abundance, distribution, and speciation of sulfur in coals. In Q. Yang (Ed.), Geology of Fossil Fuels—Coal. Proceedings of the 30th International Geological Congress, vol. 18, Part B. VSP, Utrecht, The Netherlands, pp. 47–57.

  • Dai, S. F., Ai, T. J., Jiao, F. L., Ma, F. X., & Li, B. C. (2000). Components of sulfur isotopes and characteristics of sulfur evolution in Wuda Coalfield, Inner Mongolia. Acta Petrologica Sinica, 16 (2), 269–274. (in Chinese with English abstract).

    Google Scholar 

  • Dai, S. F., Chou, C. L., Yue, M., Luo, K. L., & Ren, D. Y. (2005a). Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal of Coal Geology, 61, 241–258.

    Article  Google Scholar 

  • Dai, S. F., Han, D. X., & Chou, C. L. (2006a). Petrography and geochemistry of the Middle Devonian coal from Luquan, Yunnan Province, China. Fuel, 85, 456–464.

    Article  Google Scholar 

  • Dai, S. F., Hou, X. Q., Ren, D. Y., & Tang, Y. G. (2003a). Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. International Journal of Coal Geology, 55, 139–150.

    Article  Google Scholar 

  • Dai, S. F., Li, D. H., Ren, D. Y., Tang, Y. G., Shao, L. Y., & Song, H. B. (2004a). Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: Influence of a siliceous low-temperature hydrothermal fluid. Applied Geochemistry, 19, 1315–1330.

    Article  Google Scholar 

  • Dai, S. F., Ren, D. Y. (2006) Fluorine concentration of coals in China – An estimation considering coal reserves. Fuel, 85, 929–935.

    Article  Google Scholar 

  • Dai, S. F., Ren, D. Y., Chou, C.-L., Li, S. S., & Jiang, Y. F. (2006b). Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 66, 253–270.

    Article  Google Scholar 

  • Dai, S. F., Ren, D. Y., Hou, X. Q., & Shao, L. Y. (2003b). Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin Coalfield of Southwest China and their volcanic origin. International Journal of Coal Geology, 55, 117–138.

    Article  Google Scholar 

  • Dai, S .F., Ren, D. Y., & Ma, S. M. (2004b). The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel, 83, 2095–2098.

    Article  Google Scholar 

  • Dai, S. F., Ren, D. Y., Tang, Y. G., Shao, L. Y., & Hao, L. M. (2002a). Influences of low-temperature hydrothermal fluids on the re-distributions and occurrences of associated elements in coal—a case study from the Late Permian coals in the Zhijin Coalfield, Guizhou Province, Southern China. Acta Geologica Sinica (English Edition), 76, 437–445.

    Google Scholar 

  • Dai, S. F., Ren, D. Y., Tang, Y. G., Shao, L. Y., & Li, S. S. (2002b). Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. International Journal of Coal Geology, 51, 237–250.

    Article  Google Scholar 

  • Dai, S. F., Ren, D. Y., Tang, Y. G., Yue, M, & Hao, L. M. (2005b). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61, 119–137.

    Article  Google Scholar 

  • Dai, S. F., Ren, D. Y., Zhang, J. Y., & Hou, X. Q. (2003c). Concentrations and origins of platinum group elements in Late Paleozoic coals of China. International Journal of Coal Geology, 55, 59–70.

    Article  Google Scholar 

  • Dai , S. F., Sun Y. Z., & Zeng R. S. (2006c) Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. International Journal of Coal Geology, 66, 217–226.

    Article  Google Scholar 

  • Ding, Z., Zheng, B., Zhang, J., Long, J., Belkin, H. E., Finkelman, R. B., Zhao, F., Chen. C., Zhou, D., & Zhou, Y. (2001). Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Applied Geochemistry, 16, 1353–1360.

    Article  Google Scholar 

  • Finkelman, R. B. (1993). Trace and minor elements in coal. In M. H. Engel, & S. A. Macko (Eds.), Organic Geochemistry (pp. 593–607). New York: Plenum.

    Google Scholar 

  • Finkelman, R. B. (1994a). Abundance, source, and mode of occurrence of the inorganic constituents in coal. In O. Kural (Ed.), Coal (pp. 115–125). Istanbul: Istanbul Techn Univ. .

    Google Scholar 

  • Finkelman, R. B. (1994b). Mode of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21–4.

    Article  Google Scholar 

  • Finkelman, R. B., Palmer, C. A., Krasnow, M. R., Aruscavage, P. J., Sellars, G. A., & Dulong, F. T. (1990). Combustion and leaching behavior of elements in the Argonne premium coal samples. Energy Fuels, 4, 755–766.

    Article  Google Scholar 

  • Gayer, R. A., Rose, M., Dehmer, J., & Shao, L. Y. (1999) Impact of sulphur and trace element geochemistry on the utilization of a marine-influenced coal—case study from the South Wales Variscan foreland basin. International Journal of Coal Geology, 40, 151–174.

    Article  Google Scholar 

  • Goodarzi, F., Swaine, D. J. (1994). Paleoenvironmental and environmental implications of the boron content of coals. Geological Survey of Canada Bulletin, 471, 1–46.

    Google Scholar 

  • Goodarzi, F., Van der Flier-Keller, E., Beaton, A. P., & Calder, J. (1993) Influence of groundwater on geochemistry of Canadian coals. In K. H. Michaelian (Ed.), Conf. Proc. – 7th Int. Conf Coal Sci. (Vol. 1, pp. 156–159). Devon, Canada. .

  • Hao, L. M. (2000) High-resolution sequence stratigraphy of coal measures in cratonic basin-Case study of the Upper Permian in western Guizhou (in Chinese with English abstract). PhD Thesis, China University of Mining and Technology, Beijing, China, pp. 1–15.

  • Hower, J. C., Ruppert, L. F., Eble, C. F., & Clark, W. L. (2005). Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern Martin counties, Kentucky. International Journal of Coal Geology, 62, 167–181.

    Article  Google Scholar 

  • Huggins, F. E. (2002). Overview of analytical methods for inorganic constituents in coal. International Journal of Coal Geology, 50, 169–214.

    Article  Google Scholar 

  • Kim, N. D., & Fergusson, J. E. (1991). Effectiveness of a commonly used sequential extraction technique in determining the speciation of cadmium in soils. Science of the Total Environment, 105, 191–209.

    Article  Google Scholar 

  • Kostova, I., Petrov, O., & Kortenski, J .(1996). Mineralogy, geochemistry and pyrite content of Bulgarian subbituminous coals, Pernik Basin. In R. Gayer, & I. Harris (Eds.), Coalbed methane and coal geology (Vol. 109, pp. 301–314). Geological Society Publication, London.

  • Luo, K. L., Lu, J. D., & Chen, L. W. (2005). Lead distribution in Permo-Carboniferous coal from the North China Plate, China. Environmental Geochemistry and Health, 27, 31–37.

    Article  Google Scholar 

  • Luo, K. L., Ren, D. Y., Xu, L. R., Dai, S. F., Cao, D. Y., Feng, F. J., & Tan, J. A. (2004). Fluorine content and distribution pattern in Chinese coals. International Journal of Coal Geology, 57, 143–149.

    Article  Google Scholar 

  • Ren, D. Y., Xu, D. W., & Zhao, F. H. (2004). A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China. International Journal of Coal Geology, 57, 187–196.

    Article  Google Scholar 

  • Ren, D. Y., Zhao, F. H., Wang, Y. Q., & Yang, S. J. (1999). Distribution of minor and trace elements in Chinese coals. International Journal of Coal Geology, 40, 109–118.

    Article  Google Scholar 

  • Ruppert, L. F., Hower, J. C., & Eble, C. F. (2005). Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky. International Journal of Coal Geology, 63, 27–35.

    Article  Google Scholar 

  • Swaine D. J. (1971). Boron in coals of the Bowen basin as environmental indicator. In A. Davis (Ed.), Proceedings of the Second Bowen Basin Symposium. Geological Survey of Queensland (pp. 41–48). Report 62.

  • Swaine, D. J. (1990). Trace Elements in Coal. London: Bullerworths, 278pp.

    Google Scholar 

  • Swaine, D. J. (2000) Why trace elements are important. Fuel Process Technol, 65–66, 21–33.

    Article  Google Scholar 

  • Tang X. Y., & Huang W. H. (2004). Trace elements in coals of China (in Chinese) (pp. 23–32, 50–53). Beijing: Commercial Press.

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  Google Scholar 

  • Van der Flier-Keller, E. (1992). Platinum-group elements in Tulameen coal, British Columbia, Canada. A reply. Economic Geology and the Bulletin of the Society of Economic Geologists, 87, 1679–1682.

    Google Scholar 

  • Yudovich, Ya. E., & Ketris, M. P. (2005). Arsenic in coal: A review. International Journal of Coal Geology, 61, 141–196.

    Article  Google Scholar 

  • Zhang, J. Y., Ren, D. Y., Zheng, C. G., Zeng, R. S., Chou, C. L., & Liu, J. (2002). Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China. International Journal of Coal Geology, 53, 55–64.

    Article  Google Scholar 

  • Zheng, B. S., & Cai, R. G. (1998). Study on fluorine content in China coal. Chinese Journal of Control of Endemic Diseases, 3(2), 70–72 (in Chinese).

    Google Scholar 

  • Zheng, B. S., Ding, Z. H., Huang, R., Zhu, J. M., Yu, X., Wang, A., Zhou, D. X., Mao, D., & Su, H. (1999). Issues of health and disease relating to coal use in southwest China. International Journal of Coal Geology, 40, 119–132.

    Article  Google Scholar 

  • Zhou, Y. P., Bohor, B. F., & Ren, Y. L. (2000). Trace element geochemistry of altered volcanic ash layers (Tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. International Journal of Coal Geology, 44, 305–324.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Shanxi Education Department (No.DK01jk145) and Natural Science Foundation of Shanxi Science Department (2004D02). Special thanks were given to Professor Deyi Ren and Shifeng Dai for their constructive constructions. The author is grateful to the two anonymous reviewers for their careful reviews and detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianye Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J. Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Puan Coalfield, southwestern Guizhou, China. Environ Geochem Health 28, 567–576 (2006). https://doi.org/10.1007/s10653-006-9055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-006-9055-z

Keywords

Navigation