Skip to main content

Advertisement

Log in

A numerical investigation of the influence time distribution in a shallow coastal lagoon environment of the Gulf of California

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The influence time distribution in Santa María La Reforma coastal lagoon, which is one of the most productive ecosystems in Mexico, has been numerically investigated. A depth integrated finite difference hydrodynamic model, coupled with the advection–diffusion equation and an approach known as remnant function, have been used to predict the influence time distributions. Prescribed values of tidal harmonics were used to force the model at the two open boundaries of the model domain. The numerical experiments performed consisted of the instantaneous injection, of a passive hypothetical tracer at 100% concentration, to the whole coastal lagoon which was subject to the wind action and tidal forcing. The results indicate that influence time fluctuated between a few days and 4.0 months. The longest values were predicted close to the Talchichitle Island in the eastern part of the lagoon while the shortest were found close to the inlets where the relatively deep channels and high speed tidal currents favor the discharge of the tracer into the ocean. Knowledge of the influence time distribution is very useful to assess the environmental impacts of contaminants and to establish management plans for coastal lagoons conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aldeco-Ramírez J, Signoret-Poillon M, Monreal-Gómez MA, Salas de León DA (2012) Export of materials along a tidal river channel that links coastal lagoon to the adjacent sea. Braz J Oceanogr 60(3):311–322

    Article  Google Scholar 

  2. Backhaus JO (1983) A semi-implicit scheme for the shallow water equations for the application to the shelf sea model. Cont Shelf Res 2:243–254

    Article  Google Scholar 

  3. Bergheim A, Brinker A (2003) Effluent treatment for flow through systems and European and environmental regulations. Aquac Eng 27:61–77

    Article  Google Scholar 

  4. Carbajal N (1993). Modeling of the circulation in the Gulf of California. Berichte aus dem Zentrum fur Klima- und Meeresforschung. Reihe B.: Ozeanograph, Nr. 3. Ph. D. Thesis, Hamburg University

  5. Carbajal N, Backhaus JO (1998) Simulation of tides, residual flow and energy budget in the Gulf of California. Oceanol Acta 21(3):429–446

    Article  Google Scholar 

  6. Carbajal N, Piney S, Gomez-Rivera J (2005) A numerical study on the influence of geometry on the formation of sandbanks. Ocean Dyn 55(5–6):559–568

    Article  Google Scholar 

  7. Crank J (1979) The mathematics of diffusion. Oxford Science Publications, Oxford

    Google Scholar 

  8. Cucco A, Umgiesser G (2006) Modeling the Venice Lagoon residence time. Ecol Model 193:34–51

    Article  Google Scholar 

  9. Delhez EJM, de Brye B, de Brauwere A, Deleersnijder E (2014) Residence time vs influence time. J Mar Syst 132:185–195

    Article  Google Scholar 

  10. Dick S, Schonfeld W (1996) Water transport and mixing in the North Frisian Wadden Sea. Results of numerical investigations. Ger J Hydrogr 48:27–48

    Google Scholar 

  11. Fugate DC, Friedricks CT, Bilgil A (2005) Estimation of the residence time in a shallow back barrier lagoon, Hog Island Bay, Virginia, USA. In M. Spaulding (ed) Proceedings of the Ninth International Conference on Estuarine and Coastal Modeling, pp 319–337

  12. Garcia EA (1992) Distribución textural y mineralógica de los sedimentos del Sistema Lagunar playa Colorada—Santa María La Reforma-Santa María. Sinaloa. Tesis de Licenciatura. Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México

  13. Gilmartin M, Revelante N (1978) The phytoplankton characteristics of the barrier island lagoons of the Gulf of California. Estuar Coast Shelf Sci 7:29–47

    Article  Google Scholar 

  14. Li Y, Yao J (2015) Estimation of transport trajectory and residence time in large river-lake systems: application to Poyang Lake (China) using a combined model approach. Water 7:5203–5223

    Article  Google Scholar 

  15. López-Aguiar LLC (2006) Distribución espacial y estacional de las principales especies químicas del nitrógeno en aguas de las lagunas costeras de Sinaloa. Tesis de Maestría. Univ. Nal. Autón, Mex, p 204

    Google Scholar 

  16. Mahanty MM, Mohanty PK, Pattnaik AK, Panda US, Pradhan S, Samal RN (2016) Hydrodynamics, temperature/salinity variability and residence time in the Chilika lagoon during dry and wet period: measurement and modeling. Cont Shelf Res 125:28–43

    Article  Google Scholar 

  17. Malhadas MS, Neves RJ, Leitao PC, Silva A (2010) Influence of tide and waves on water renewal in Obidos Lagoon, Portugal. Ocean Dyn 60:41–55

    Article  Google Scholar 

  18. Marinov D, Norro A, Zaldira JM (2006) Application of Coherens model for hydrodynamic investigation of Sacca di Goro coastal lagoon (Italian Adriatic Sea Shore). Ecol Model 193:52–68

    Article  Google Scholar 

  19. Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time and age as transport time scales. Limnol Oceanogr 47(5):1545–1553

    Article  Google Scholar 

  20. Montaño-Ley Y, Peraza-Vizcarra R, Páez-Osuna F (2007) The tidal hydrodynamics modeling of the Topolobampo coastal lagoon system and the implications for pollutant dispersion. Environ Pollut 147:282–290

    Article  Google Scholar 

  21. Montaño-Ley Y, Peraza-Vizcarra R, Páez-Osuna F (2008) The tidal hydrodynamics and the implications for the dispersion of effluents on Mazatlán harbor: an urbanized shallow coastal lagoon. Water Air Soil Pollut 194:343–357

    Article  Google Scholar 

  22. Montaño-Ley Y, Páez-Osuna F (2014) Assessment of the tidal currents and pollutants dynamics associated with shrimp aquaculture effluents in SAMARE coastal lagoon (NW Mexico). Aquac Res. https://doi.org/10.1111/are.12071

    Google Scholar 

  23. Muhech JE, Orozco J (1991) Sedimentología del sistema lagunar Santa María La Reforma, municipio de Angostura Sinaloa. Secretaría de Marina, Topolobampo

    Google Scholar 

  24. Páez-Osuna F, Ramírez Reséndiz G, Ruiz Fernández AC, Soto Martínez MF (2007) La Contaminación por nitrógeno y fósforo en Sinaloa: flujos, fuentes, efectos y opciones de manejo. UNAM, El Colegio de Sinaloa, México

    Google Scholar 

  25. Parés-Sierra A, Mascarenhas A, Marinone SG, Castro R (2003) Temporal and spatial variation of the surface winds in the Gulf of California. Geophys Res Lett 30(6):1312–1321

    Article  Google Scholar 

  26. Patgaonkar RS, Vethamony P, Lokesh KS, Babu MT (2012) Residence time of pollutants discharged in the Gulf of Kachchh, northwestern Arabian Sea. Mar Pollut Bull 64:1659–1666

    Article  Google Scholar 

  27. Plegher FB (1969) Some general features of coastal lagoons. In: Ayala-Castañares A (ed) Lagunas costeras. UNAM, Mexico, pp 5–26

    Google Scholar 

  28. Soto-Jiménez MF, Páez-Osuna F (2001) Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán harbour (SE Gulf of California). Estuar Coast Shelf Sci 53(259):284

    Google Scholar 

  29. Spaulding ML (1994) Modeling of circulation and dispersion in coastal lagoons. In: Kjerfve B (ed) Coastal lagoon processes. Elsevier, Amsterdam, pp 103–133

    Chapter  Google Scholar 

  30. Takeoka H (1984) Exchange and transport time scales in the Seto Inland Sea. Cont Shelf Res 3(4):327–341

    Article  Google Scholar 

  31. Takeoka H (1984) Fundamental concepts of exchange and transport time scales in a coastal sea. Cont Shelf Res 3(3):311–326

    Article  Google Scholar 

  32. Umgiesser G, Ferrarin C, Cucco A, DePascalis F, Bellafiore D, Ghezzo M, Bajo M (2014) Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. J Geophys Res Oceans 119(4):2212–2226

    Article  Google Scholar 

  33. Valencia ID, Guitart SS (2004) Laguna Playa Colorada y Santa María La Reforma. Guadalajara: 6th Workshop on Management and Conservation of Wetlands in Mexico

  34. Vallino JJ, Hopkinson CS Jr (1998) Estimation of dispersion and characteristic mixing times in Plum Island Sound Estuary. Estuar Coast Shelf Sci 46:333–350

    Article  Google Scholar 

  35. Villalba A, Robadue J (2002) Conservation and development strategy for Santa María Bay, México. In: Lewis NF (ed) Inter-coast international newsletter for coastal management. University of Rhode Island, Narragansett, Rhode Island, pp 1–4

    Google Scholar 

  36. Wan Y, Qiu Ch, Doering P, Ashton M, Sun D, Coley T (2013) Modeling residence time with a three-dimensional hydrodynamical model: linkage with chlorophyll in a subtropical estuary. Ecol Model 268:93–102

    Article  Google Scholar 

  37. Zimmerman JTF (1986) The tidal whirlpool: a review of horizontal dispersion by tidal and residual currents. Neth J Sea Res 20(213):133–154

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Victoria Montes-Montes for her assistance in this investigation and to the project: PAPIIT-UNAM IN- 208673, for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Federico Soto-Jiménez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montaño-Ley, Y., Soto-Jiménez, M.F. A numerical investigation of the influence time distribution in a shallow coastal lagoon environment of the Gulf of California. Environ Fluid Mech 19, 137–155 (2019). https://doi.org/10.1007/s10652-018-9619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9619-3

Keywords

Navigation