Skip to main content
Log in

Verification of a 3D CFD model for vertical slot fish-passes

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present work, we verified a 3D computational fluid dynamics model for vertical slot fish-passes (VSFs) that employs the renormalization-group k-epsilon turbulence model (RNG KE) and the volume of fluid (VOF) method. We compared model calculations with experiments in two pool designs T1 and T2 of an experimental VSF and with 2D calculations using the shallow water equations (SWE) and the standard k-epsilon (2D SKE) model. Calculations of the 3D model showed (1) good agreement with experiments and 2D calculations in predicting mean flow velocities, (2) better performance in the determination of the water surface in the VSF, which is attributed to the accurate VOF method, (3) superior prediction of turbulence characteristics than the 2D model, which is due to the 3D RNG KE model that overcomes the problem of turbulence overestimation of the 2D SKE model, and to the fact that the 3D model takes into account the 3D features of the flow in the fish pass. Moreover, the present 3D calculations showed that the common assumptions in VSFs that (1) the flow is 2D, and (2) the simulation of 4 pools of a VSF is sufficient to obtain satisfactory results, are not always valid. Flow can be considered as 2D only in pool design T2 and for certain geometries and flow characteristics in pool design T1; while, eventually, all the pools of a fish pass need to be modeled to ensure accurate results. Finally, the present work illustrates the need to perform fish experiments simultaneously with flow experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Ai :

Fractional area open to flow in the i direction

b0 :

Slot width

cD :

Drag coefficient

D:

Diffusivity

DDif:

Diffusion (ε transport equation)

Diff:

Diffusion (k transport equation)

E:

Energy dissipation per unit volume

F:

Volume fraction

fi :

Viscous acceleration in the i direction

G:

Buoyancy production

Gi :

Body acceleration in the i direction

K:

Turbulent kinetic energy

kref :

Reference turbulent kinetic energy

L:

Length of the pool

P:

Pressure

Ps :

Shear production

Q:

Discharge

Q*:

Dimensionless discharge

T:

Time

ui :

Velocity of water in the i direction

Vb :

Mean jet velocity

Vb,max :

Maximum jet velocity

VF :

Fractional volume open to flow

Vref :

Reference velocity

W:

Width of the pool

xi :

Cartesian coordinate in the i-direction

Y0 :

Water depth at the middle of the pool

Yb :

Water depth at the slot

Ym :

Mean water depth at the pool

Ymax :

Maximum water depth at the pool

Ymin :

Minimum water depth at the pool

ε:

Turbulence dissipation rate

εmax :

Maximum turbulence dissipation rate

μ:

Dynamic viscosity

μT :

Eddy viscosity

μtot :

Total dynamic viscosity

ρ:

Water density

τ:

Shear stress on water surface

τbxi :

Wall shear stress

τxixi :

Strain rate tensor

References

  1. An R, Li J, Liang R, Tuo Y (2016) Three-dimensional simulation and experimental study for optimising a vertical slot fishway. J Hydro Environ Res 12:119–129. https://doi.org/10.1016/j.jher.2016.05.005

    Article  Google Scholar 

  2. ANSYS (2006) ANSYS CFX reference guide, release 11.0. ANSYS Inc., Canonsburg

    Google Scholar 

  3. ANSYS (2011) ANSYS FLUENT theory guide, release 14.0. ANSYS Inc., Canonsburg

    Google Scholar 

  4. Arrowsmith CS, Zhu Y (2014) Comparison between 2D and 3D hydraulic modelling approaches for simulation of vertical slot fish-ways. Hydraul Struct Soc Eng Chall Extrem. https://doi.org/10.14264/uql.2014.49

    Article  Google Scholar 

  5. Barton AF, Keller RJ (2003) 3D free surface model of a vertical slot fishway. In: XXX IAHR congress, Thessaloniki, Greece. International Association ofHydraulic Engineering and Research

  6. Bell M (1986) Fisheries handbook of engineering requirements and biological criteria—fish passage development and evaluation program. US Army Corps of Engineers, North Pacific Division, Portland

    Google Scholar 

  7. Bombač M, Novak G, Rodič P, Četina M (2014) Numerical and physical model study of a vertical slot fishway. J Hydrol Hydromech. https://doi.org/10.2478/johh-2014-0013

    Article  Google Scholar 

  8. Bousmar D, Li Z, Baugnee A, Degreef JC (2015) Flow pattern in fish passes: comparison of numerical models. In: E-Proceedings of the 36th IAHR world congress, vol 4, Hague, Netherlands

  9. Cd-Adapco STAR Reference Guide, Siemens – Cd Adapco Inc., 2015

  10. Cea L, Pena L, Puertas J, Vázquez-Cendón ME, Peña E (2007) Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J Hydraul Eng 133(2):160–172. https://doi.org/10.1061/(asce)0733-9429(2007)133:2(160

    Article  Google Scholar 

  11. Chorda J, Maubourguet MM, Roux H, Larinier M, Tarrade L, David L (2010) Two-dimensional free surface flow numerical model for vertical slot fishways. J Hydraul Res 48(2):141–151. https://doi.org/10.1080/00221681003703956

    Article  Google Scholar 

  12. Clay CH (1995) Design of fishways and other fish facilities. CRC Press, Boca Raton

    Google Scholar 

  13. DWA-M 509 (2014) Merkblatt DWA-M 509: Fischaufstiegsanlagen und Fischpassierbare Bauwerke—Gestaltung, Bemessung, Qualitätssicherung, Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfalle. V. (DWA), Hennef (in German)

  14. Flow Science Inc. (2014) FLOW-3D user’s manual. Flow Science Inc, Santa Fe, p 2014

    Google Scholar 

  15. Heimerl S, Hagmeyer M, Echteler C (2008) Numerical flow simulation of pool-type fishways: new ways with well-known tools. Hydrobiologia 609(1):189–196. https://doi.org/10.1007/s10750-008-9413-1

    Article  Google Scholar 

  16. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  Google Scholar 

  17. Hotchkiss RH (2002) turbulence investigation and reproduction for assisting downstream migrating juvenile salmonids, part I of II, 2001–2002 final report. https://doi.org/10.2172/901269

  18. Katopodis C (1992) Introduction to fishway design. Winnipeg, Manitoba, Canada

  19. Khan LA (2006) A three-dimensional computational fluid dynamics (CFD) model analysis of free surface hydrodynamics and fish passage energetics in a vertical-slot fishway. North Am J Fish Manag 26(2):255–267

    Article  Google Scholar 

  20. Klein J, Oertel M (2015) Comparison of between crossbar block ramp and vertical slot fish-pass via numerical 3D CFD Simulation. In: E- Proceedings of the 36th IAHR world congress, Hague, Netherlands

  21. Larinier M (1992) Passes à bassins successifs, prébarrages et rivières artificielles. Bull Fr Pêche Piscic 326(327):45–72

    Article  Google Scholar 

  22. Larinier M (2002) Pool fishways, pre-barrages and natural bypass channels. Bull Fr Pêche Piscic 364 supplément(327):54–82. https://doi.org/10.1051/kmae/2002108

    Article  Google Scholar 

  23. Liu M, Rajaratnam N, Zhu DZ (2006) Mean flow and turbulence structure in vertical slot fishways. J Hydraul Eng 132(8):765–777. https://doi.org/10.1061/(asce)0733-9429(2006)132:8(765)

    Article  Google Scholar 

  24. Marriner BA, Baki AB, Zhu DZ, Thiem JD, Cooke SJ, Katopodis C (2014) Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol Eng 63:88–101. https://doi.org/10.1016/j.ecoleng.2013.12.010

    Article  Google Scholar 

  25. Marriner BA, Baki AB, Zhu DZ, Cooke SJ, Katopodis C (2016) The hydraulics of a vertical slot fishway: a case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol Eng 90:190–202. https://doi.org/10.1016/j.ecoleng.2016.01.032

    Article  Google Scholar 

  26. Odeh M (2002) Evaluation of the effects of turbulence on the behavior of migratory fish, 2002 final report. https://doi.org/10.2172/799292

  27. Puertas J, Pena L, Teijeiro T (2004) Experimental approach to the hydraulics of vertical slot fishways. J Hydraul Eng 130(1):10–23. https://doi.org/10.1061/(asce)0733-9429(2004)130:1(10)

    Article  Google Scholar 

  28. Rajaratnam N, Katopodis C (1984) Hydraulics of denil fishways. J Hydraul Eng 110(9):1219–1233. https://doi.org/10.1061/(asce)0733-9429(1984)110:9(1219)

    Article  Google Scholar 

  29. Rajaratnam N, Vinne GV, Katopodis C (1986) Hydraulics of vertical slot fishways. J Hydraul Eng 112(10):909–927. https://doi.org/10.1061/(asce)0733-9429(1986)112:10(909)

    Article  Google Scholar 

  30. Rajaratnam N, Katopodis C, Solanki S (1992) New designs for vertical slot fishways. Can J Civ Eng 19(3):402–414. https://doi.org/10.1139/l92-049

    Article  Google Scholar 

  31. Rodi W (1980) Turbulence models and their applications in hydraulics—a state-of-the-art review. International Association of Hydraulic Research, Delft

    Google Scholar 

  32. Rodríguez TT, Agudo JP, Mosquera LP, González EP (2006) Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecol Eng 27(1):37–48. https://doi.org/10.1016/j.ecoleng.2005.09.015

    Article  Google Scholar 

  33. Tarrade L, Texier A, David L, Larinier M (2008) Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia 609(1):177–188. https://doi.org/10.1007/s10750-008-9416-y

    Article  Google Scholar 

  34. Tarrade L, Pineau G, Calluaud D, Texier A, David L, Larinier M (2010) Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ Fluid Mech 11(1):1–21. https://doi.org/10.1007/s10652-010-9198-4

    Article  Google Scholar 

  35. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basictheory. J Sci Comput 1(1):3–51. https://doi.org/10.1007/bf01061452

    Article  Google Scholar 

  36. Van Doormaal JP, Raithby GD (1984) Enhancements of the simple method for predicting in compressible fluid flows. Numer Heat Transf Part B Fundam 7(2):147–163. https://doi.org/10.1080/10407798408546946

    Article  Google Scholar 

  37. Wang R, David L, Larinier M (2010) Contribution of experimental fluid mechanics to the design of vertical slot fish passes. Knowl Manag Quatic Ecosyst 396:02. https://doi.org/10.1051/kmae/2010002

    Article  Google Scholar 

  38. Wu S, Rajaratnam N, Katopodis C (1999) Structure of flow in vertical slot fishway. J Hydraul Eng 125(4):351–360. https://doi.org/10.1061/(asce)0733-9429(1999)125:4(351)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was performed within the framework of the IKYDA 2016 research project between Greece and Germany entitled “Development of an integrated mathematical model for the design of fish-passes in small hydroelectric power plants”. Also, we would like to thank the DAAD, the TUM and the NTUA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios I. Stamou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamou, A.I., Mitsopoulos, G., Rutschmann, P. et al. Verification of a 3D CFD model for vertical slot fish-passes. Environ Fluid Mech 18, 1435–1461 (2018). https://doi.org/10.1007/s10652-018-9602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9602-z

Keywords

Navigation