Skip to main content
Log in

RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε model

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this study, a modelling methodology is proposed for RANS simulations of neutral Atmospheric Boundary Layer (ABL) flows on the basis of the standard k-ε model, which allows the adoption of an arbitrary shear stress model. This modelling methodology is first examined in the context of an open flat terrain in an empty domain to ascertain there are no substantial changes in the prescribed profiles. The results show that relatively good homogeneity can be achieved with this modelling methodology for various sets of inflow boundary profiles. In addition, to extend the solutions derived from the standard k-ε model to RNG k-ε model, the RNG k-ε model is in detail assembly and tuned. Finally, the topographic effects on surface wind speeds over a complex terrain are assessed with the combined use of the proposed methodology and the modified RNG model. The numerical results are in good agreement with wind tunnel testing results and long-term field observations. A discussion of the effects of horizontal homogeneity and turbulence models on the simulated wind flows over a complex terrain is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bitsuamlak GT, Stathopoulos T, Bedard C (2004) Numerical evaluation of wind flow over complex terrain: review. J Aerosp Eng 17(4):135–145

    Article  Google Scholar 

  2. Balogh M, Parente A, Benocci C (2012) RANS simulation of ABL flow over complex terrains applying an Enhanced k-ε model and wall function formulation: implementation and comparison for fluent and OpenFOAM. J Wind Eng Ind Aerodyn 104–106:360–368

    Article  Google Scholar 

  3. Uchida T, Ohya Y (2003) Large-eddy simulation of turbulent airflow over complex terrain. J Wind Eng Ind Aerodyn 91(1–2):219–229

    Article  Google Scholar 

  4. Bechmann A (2006) Phd thesis LES of Atmospheric flow over complex terrain. Risø National Laboratory, Technical University of Denmark, Roskilde, Denmark

  5. Tamura T, Okuno A, Sugio Y (2007) LES analysis of turbulent boundary layer over 3D steep hill covered with vegetation. J Wind Eng Ind Aerodyn 95(9–11):1463–1475

    Article  Google Scholar 

  6. Rodi W (1997) Comparison of LES and RANS calculations of the flow around bluff bodies. J Wind Eng Ind Aerodyn 69–71:55–75

    Article  Google Scholar 

  7. Prospathopoulos J, Voutsinas SG (2006) Implementation issues in 3D wind flow predictions over complex terrain. J Sol Energy Eng 128(4):539

    Article  Google Scholar 

  8. Richards PJ, Hoxey RP (1993) Appropriate boundary conditions for computational wind engineering models using the k-ε model. J Wind Eng Ind Aerodyn 46–47:145–153

    Article  Google Scholar 

  9. Richards PJ, Norris SE (2011) Appropriate boundary conditions for computational wind engineering models revisited. J Wind Eng Ind Aerodyn 99(4):257–266

    Article  Google Scholar 

  10. Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: wall function problems. Atmos Environ 41(2):238–252

    Article  Google Scholar 

  11. Riddle A (2004) Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos Environ 38(7):1029–1038

    Article  Google Scholar 

  12. Hargreaves DM, Wright NG (2007) On the use of the kε model in commercial CFD software to model the neutral atmospheric boundary layer. J Wind Eng Ind Aerodyn 95(5):355–369

    Article  Google Scholar 

  13. Blocken B, Carmeliet J, Stathopoulos T (2007) CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. J Wind Eng Ind Aerodyn 95(9–11):941–962

    Article  Google Scholar 

  14. Yang Y, Gu M, Chen SQ, Jin XY (2009) New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering. J Wind Eng Ind Aerodyn 97(2):88–95

    Article  Google Scholar 

  15. O’Sullivan JP, Archer RA, Flay RGJ (2011) Consistent boundary conditions for flows within the atmospheric boundary layer. J Wind Eng Ind Aerodyn 99(1):65–77

    Article  Google Scholar 

  16. Parente A, Gorle C, Beeck JV, Benocci C (2011) A Comprehensive modelling approach for the neutral atmospheric boundary layer: consistent inflow conditions, wall function and turbulence model. Bound-Layer Meteorol 140(3):411–428

    Article  Google Scholar 

  17. Parente A, Gorle C, Beeck JV, Benocci C (2011) Improved kε model and wall function formulation for the RANS simulation of ABL flows. J Wind Eng Ind Aerodyn 99(4):267–278

    Article  Google Scholar 

  18. Gorle C, Beeck JV, Rambaud P, Tendeloo GV (2009) CFD modelling of small particle dispersion: the influence of the turbulence kinetic energy in the atmospheric boundary layer. Atmos Environ 43(3):673–681

    Article  Google Scholar 

  19. Juretić F, Kozmar H (2013) Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard kε turbulence model. J Wind Eng Ind Aerodyn 115:112–120

    Article  Google Scholar 

  20. Kim HG, Patel VC, Lee CM (2000) Numerical simulation of wind flow over hilly terrain. J Wind Eng Ind Aerodyn 87:45–60

    Article  Google Scholar 

  21. Lun YF, Mochida A, Murakami S, Yoshino H, Shirasawa T (2003) Numerical simulation of flow over topographic features by revised k-ε models. J Wind Eng Ind Aerodyn 91(1–2):231–245

    Article  Google Scholar 

  22. Lun YF, Mochida A, Yoshino H, Murakami S (2007) Applicability of linear type revised k-ε models to flow over topographic features. J Wind Eng Ind Aerodyn 95(5):371–384

    Article  Google Scholar 

  23. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. ESDU 85020 (1993) Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong winds (neutral atmosphere). In: Engineering Sciences Data Unit

  25. Pontiggia M, Derudi M, Busini V, Rota R (2009) Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes. J Hazard Mater 171(1–3):739–747

    Article  Google Scholar 

  26. Panofsky HA (1977) Wind structure in strong winds below 150 m. Wind Eng 1(2):91–103

    Google Scholar 

  27. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: The finite, vol method. Pearson Education, Harlow

    Google Scholar 

  28. ANSYS Inc. (2012) Fluent 14.1 User’s Guide. ANSYS Inc.

  29. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51

    Article  Google Scholar 

  30. Franke J, Hellsten A, Schlunzen H, Carissimo B (2007) best practice guideline for the CFD simulation of flows in the urban environment. COST Action 732 COST Office Brussels, Belgium

    Google Scholar 

  31. Launder B, Sharma B (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1(2):131–137

    Article  Google Scholar 

  32. Poroseva S, Iaccarino G (2001) Simulating separated flow using kε model. Annual research briefs. Center for Turbulence Research, Stanford University, Stanford

    Google Scholar 

  33. He YC, Chan PW, Li QS (2014) Standardization of raw wind speed data under complex terrain conditions: a data-driven scheme. J Wind Eng Aerodyn 131:12–30

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was fully supported by a grant from the Research Grants Council of Hong Kong Special Administrative Region, China (Project No: CityU 118213) and research Grants from the National Natural Science Foundation of China (Project No. 51278439 and 51478405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. S. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B.W., Li, Q.S., He, Y.C. et al. RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε model. Environ Fluid Mech 16, 1–23 (2016). https://doi.org/10.1007/s10652-015-9408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9408-1

Keywords

Navigation