Skip to main content
Log in

Two dimensional river flow and sediment transport model

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

This work presents the development and calibration of a two dimensional river flow, sediment transport and bed evolution model that couples the active-layer and multiple size-class approach for sediment transport modeling with an enhanced advection algorithm. The governing equations are solved using the fractional step method. This resulted in three successive steps (advection, diffusion and continuity) for the flow equations, and two steps (advection and diffusion) for the sediment transport and bed evolution equations. The focus of the research is the improvement of the advection computation (both in water and sediment computation) by reducing the limitation it imposes on the time step. Overcoming this restriction is enabled by introducing modifications to the characteristic method. Implementing these adjustments allows the characteristic curve to extend throughout multiple computational cells. After evaluating the advection computation for both flow and sediment transport by comparison of the proposed algorithm with various classical methods, the developed model is assessed using field measurements conducted on the Danube River. Analysis of the measured and computed values confirmed the developed model’s reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Appadu AR, Dauhoo MZ, Rughooputh SDDV (2008) Control of numerical effects of dispersion and dissipation in numerical schemes for efficient schock-capturing through an optimal Courant number. Comput Fluids 37:767–783

    Article  Google Scholar 

  2. Benqué JP, Cunge JA, Feuillet J, Hauguel A, Holly FM Jr (1982) New method for tidal current computation. J Waterw Port Coast Ocean Div Proc ASCE 108(WW3):396–417

    Google Scholar 

  3. Biringen S, Chow C-Y (2011) An introduction to computational fluid mechanics by example. Wiley, Hoboken

    Book  Google Scholar 

  4. Budinski L, Spasojević M (2013) 2-D modelling of flow and sediment interaction—sediment mixtures. J Waterw Port Coast Ocean Eng. doi:10.1061/(ASCE)WW.1943-5460.0000226

  5. Crank J, Nicolson P (1996) A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Adv Comput Math 6:207–226

    Article  Google Scholar 

  6. Duan JG, Nanda SK (2006) Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groyne field. J Hydrol 327:426–437

    Article  Google Scholar 

  7. Duan JG, Wang SY, Jia Y (2001) The application of the enhanced CCHE2D model to study the alluvial channel migration processes. J Hydraul Res 39(5):469–480

    Article  Google Scholar 

  8. Ewing RE, Wang H (2001) A summary of numerical methods for time-dependent advection-dominated partial differential equations. J Comput Appl Math 128:423–445

    Article  Google Scholar 

  9. Ferziger JH, Perić M (2002) Computational methods for fluid dynamics, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  10. Fletcher CAJ (1991) Computational techniques for fluid dynamics, vol 1, 2nd edn. Springer, Berlin

    Google Scholar 

  11. García MH (ed) (2008) Sedimentation engineering—processes, measurements, modeling and practice. American Society of Civil Engineers, Reston

  12. Garcia M, Parker G (1991) Entrainment of bed sediment into suspension. J Hydraul Eng 117(4):414–435

    Article  Google Scholar 

  13. Hirsch C (2007) Numerical computation of internal and external flows, vol 1, 2nd edn. Elsevier, Oxford

    Google Scholar 

  14. Hsieh TY, Yang JC (2003) Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation. J Hydraul Eng 129(8):597–612

    Article  Google Scholar 

  15. Hsieh TY, Yang JC (2004) Implicit two-step split-operator approach for modelling two-dimensional open channel flow. J Hydrosci Hydraul Eng 22(2):113–139

    Google Scholar 

  16. Holly FM Jr, Preissmann A (1977) Accurate calculation of transport in two dimensions. J Hydraul Div Proc Am Soc Civil Eng 103(HY11):1259–1277

    Google Scholar 

  17. Holly FM Jr, Usseglio-Polatera J-M (1984) Dispersion simulation in two-dimensional tidal flow. J Hydraul Eng 110(7):905–926

    Article  Google Scholar 

  18. Hung MC, Hsieh TY, Wu CH, Yang JC (2009) Two-dimensional nonequlibrium noncohesive and cohesive sediment transport model. J Hydraul Eng 135(5):339–382

    Article  Google Scholar 

  19. Isic M, Horvat Z, Spasojevic M (2013) Advection step in the split-operator approach applied to river modeling. Appl Numer Math 72:1–18

    Article  Google Scholar 

  20. Jia Y, Wang SY (1999) Numerical model for channel flow and morphological change studies. J Hydraul Eng 125(9):737–749

    Google Scholar 

  21. Julien PY (2002) River mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Lax PD (1954) Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math 7:159–193

    Article  Google Scholar 

  23. Lax P, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13:217–237

    Article  Google Scholar 

  24. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

    Article  Google Scholar 

  25. Lin B, Falconer RA (1996) Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters. J Hydraul Res 34(4):435–456

    Article  Google Scholar 

  26. MacCormack RW (1969) The effect of viscosity in hypervelocity impact cratering. AIAA Paper 69-354

  27. Minh Duc B, Wenka Th, Rodi W (1998) Depth-average numerical modeling of flow and sediment transport in the Elbe River. Proceedings of the 3rd international conference on hydroscience and engineering, Cottbus/Berlin, 31 Aug–3 Sept

  28. Minh Duc B, Wenka T, Rodi W (2004) Numerical modeling of bed deformation in laboratory channels. J Hydraul Eng 130(9):894–904

    Article  Google Scholar 

  29. Muste M, Yu K, Pratt T, Abraham D (2004a) Practical aspects of ADCP data use for quantification of mean river flow characteristics; Part II: fixed-vessel measurements. Flow Meas Instrum 15:17–28

    Article  Google Scholar 

  30. Muste M, Yu K, Spasojevic M (2004b) Practical aspects of ADCP data use for quantification of mean river flow characteristics; Part I: moving-vessel measurements. Flow Meas Instrum 15:1–16

    Article  Google Scholar 

  31. Nagata N, Hosoda T, Muramoto Y (2000) Numerical analysis of river channel processes with bank erosion. J Hydraul Eng 126(4):243–252

    Article  Google Scholar 

  32. Papanicolaou A, Elhakeem M, Krallis G, Prakash S, Edinger J (2008) Sediment transport modeling review—current and future developments. J Hydraul Eng 138(4):1–14

    Article  Google Scholar 

  33. Peaceman DW, Rachford HH Jr (1955) The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math 3(1):28–41

    Article  Google Scholar 

  34. Rodi W (2000) Numerical calculations of flow and sediment transport in rivers. Proceedings of international symposium on stochastic hydraulics, Beijing, 25–28 July

  35. Shimizu Y, Yamaguchi H, Itakura T (1990) Three-dimensional computation of flow and bed deformation. J Hydraul Eng 116(9):1090–1108

    Article  Google Scholar 

  36. Spasojevic M, Holly FM Jr (1990) 2-D bed evolution in natural watercourses—new simulation approach. J Waterw Port Coast Ocean Eng 116(4):425–443

    Article  Google Scholar 

  37. Spasojevic M, Holly FM Jr (2008) Two- and three-dimensional numerical simulation of mobile-bed hydrodynamics and sedimentation. In: García MH (ed) Sedimentation engineering—processes, measurements, modeling and practice. American Society of Civil Engineers, Reston, pp 683–761

    Chapter  Google Scholar 

  38. Strikwerda JC (2004) Finite difference scemes and partial differential equations, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  39. Thonon I, Jong K, Perk M, Middelkoop H (2007) Modelling floodplain sedimentation using particle tracking. Hydrol Process 21:1402–1412

    Article  Google Scholar 

  40. Tsai T-L, Chiang S-W, Yang J-C (2006) Examination of characteristics method with cubic interpolation for advection–diffusion equation. Comput Fluids 35:1217–1227

    Article  Google Scholar 

  41. van Rijn LC (1984a) Sediment transport, Part I: bed load transport. J Hydraul Eng 110(10):1431–1456

    Article  Google Scholar 

  42. van Rijn LC (1984b) Sediment transport, Part II: suspended load transport. J Hydraul Eng 110(11):1613–1641

    Article  Google Scholar 

  43. van Rijn LC (1987) Mathematical modeling of morphological processes in the case of suspended sediment transport. Delft Hydraulics Communication 382

  44. Wang G, Xia J, Wu B (2008) Numerical simulation of longitudinal and lateral channel deformations in braided reach of the Lower Yellow River. J Hydraul Eng 134(8):1064–1078

    Article  Google Scholar 

  45. Wu W, Rodi W, Wenka T (2000) 3D numerical modeling of flow and sediment transport in open chanels. J Hydraul Eng 126(1):4–15

    Article  Google Scholar 

  46. Wu W (2004) Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. J Hydraul Eng 130(10):1013–1024

    Article  Google Scholar 

  47. Wu W (2008) Computational river dynamics. Taylor & Francis Group, London

    Google Scholar 

  48. Wu W, Wang SSY (2006) Formulas for sediment porosity and settling velocity. J Hydraul Eng 132(8):858–862

    Article  Google Scholar 

  49. Yanenko NN (1971) The method of fractional steps. Translated by Holt M. Springer, New York

  50. Zhou G, Wang H, Shao X, Jia D (2009) Numerical model for sediment transport and bed degradation in the Yangtze Channel Downstream of Three Gorges Reservoir. J Hydraul Eng 135(9):729–740

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by EU through Hungary–Serbia IPA Cross-border Co-operation Programme, Project Number HUSRB/0901/221/001; and the Ministry of Education and Science of the Republic of Serbia, Project Number TR 37009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Isic.

Appendices

Appendix 1: Water flow model

Terms in the diffusion step equation, introduced to enable a more understandable representation of the extensive diffusion equation (2).

$$\begin{aligned} \displaystyle T_{\xi \eta }^{\mathrm{dif}}&= \frac{1}{h_\xi }\,\frac{\partial v}{\partial \xi }-\frac{1}{h_\xi \,h_\eta }\,\left( \frac{\partial h_\xi }{\partial \eta }\,u +\frac{\partial h_\eta }{\partial \xi }\,v\right) +\frac{1}{h_\eta }\,\frac{\partial u}{\partial \eta },\nonumber \\ \displaystyle T_\xi ^{\mathrm{dif}}&= \frac{1}{h_\xi }\,\frac{\partial u}{\partial \xi }+\frac{1}{h_\xi \,h_\eta }\,\frac{\partial h_\xi }{\partial \eta }\,v,\quad T_\eta ^{\mathrm{dif}}=\frac{1}{h_\eta }\,\frac{\partial v}{\partial \eta }+\frac{1}{h_\xi \,h_\eta }\,\frac{\partial h_\eta }{\partial \eta }\,u \end{aligned}$$
(41)

Dispersion terms in the diffusion step equation (2)

$$\begin{aligned} D_u^{\mathrm{disp}}&= \displaystyle -\frac{1}{d\,h_\xi \,h_\eta }\,\left( \frac{\partial }{\partial \xi }\int _{z_b}^{z_s}{h_\eta \,u''\,u''\,dz} -\frac{\partial }{\partial \eta }\int _{z_b}^{z_s}{h_\xi \,u''\,v''\,dz}\right. \nonumber \\&\displaystyle \left. -\frac{\partial h_\xi }{\partial \eta }\,\int _{z_b}^{z_s}{u''\,v''\,dz} +\frac{\partial h_\eta }{\partial \xi }\,\int _{z_b}^{z_s}{v''\,v''\,dz}\right) ,\end{aligned}$$
(42)
$$\begin{aligned} D_v^{\mathrm{disp}}&= \displaystyle -\frac{1}{d\,h_\xi \,h_\eta }\,\left( \frac{\partial }{\partial \xi }\int _{z_b}^{z_s}{h_\eta \,u''\,v''\,dz} -\frac{\partial }{\partial \eta }\int _{z_b}^{z_s}{h_\xi \,v''\,v''\,dz}\right. \nonumber \\&\displaystyle \left. -\frac{\partial h_\eta }{\partial \xi }\,\int _{z_b}^{z_s}{u''\,v''\,dz} +\frac{\partial h_\xi }{\partial \eta }\,\int _{z_b}^{z_s}{u''\,u''\,dz}\right) , \end{aligned}$$
(43)

where upper index \(''\) denotes the difference between the actual and depth averaged velocity.

Appendix 2: Sediment transport and bed evolution model

The discretized divergence of the bed-load flux vector in Eqs. (26) and (27).

$$\begin{aligned} x{\mathrm{div}}\left( q_k\right)&= \displaystyle \theta \,\frac{\left[ h_\eta \left( q_\xi \right) _k\right] _{i+\frac{1}{2},j}^{n+1} -\left[ h_\eta \left( q_\xi \right) _k\right] _{i-\frac{1}{2},j}^{n+1}}{\left( h_\xi \right) _{i,j}\,\left( h_\eta \right) _{i,j}}\nonumber \\&\displaystyle +\left( 1-\theta \right) \frac{\left[ h_\eta \left( q_\xi \right) _k\right] _{i+\frac{1}{2},j}^n -\left[ h_\eta \left( q_\xi \right) _k\right] _{i-\frac{1}{2},j}^n}{\left( h_\xi \right) _{i,j}\,\left( h_\eta \right) _{i,j}}\nonumber \\&\displaystyle +\,\,\theta \,\frac{\left[ h_\xi \left( q_\eta \right) _k\right] _{i,j+\frac{1}{2}}^{n+1} -\left[ h_\xi \left( q_\eta \right) _k\right] _{i,j-\frac{1}{2}}^{n+1}}{\left( h_\xi \right) _{i,j}\,\left( h_\eta \right) _{i,j}}\nonumber \\&\displaystyle +\left( 1-\theta \right) \,\frac{\left[ h_\xi \left( q_\eta \right) _k\right] _{i,j+\frac{1}{2}}^n -\left[ h_\xi \left( q_\eta \right) _k\right] _{i,j-\frac{1}{2}}^n}{\left( h_\xi \right) _{i,j}\,\left( h_\eta \right) _{i,j}} \end{aligned}$$
(44)

The dimensionless particle parameter

$$\begin{aligned} \left( D_*\right) _k=D_k\,\left( \frac{\left( \rho _s/\rho -1\right) \,g}{\nu ^2}\right) ^{1/3}, \end{aligned}$$
(45)

and the transport stage parameter

$$\begin{aligned} T_k=\frac{V_*^2-\left( V_*^{\mathrm{cr}}\right) ^2}{\left( V_*^{\mathrm{cr}}\right) ^2}. \end{aligned}$$
(46)

In Eqs. (29) and (37), \(\nu \) denotes the kinematic viscosity coefficient, \(V_*\) the bed-shear velocity, while \(V_*^{\mathrm{cr}}\) stands for the critical bed-shear velocity according to Shields.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvat, Z., Isic, M. & Spasojevic, M. Two dimensional river flow and sediment transport model. Environ Fluid Mech 15, 595–625 (2015). https://doi.org/10.1007/s10652-014-9375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-014-9375-y

Keywords

Navigation