Skip to main content
Log in

Effects of secondary current and stratification on suspension concentration in an open channel flow

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this work, a mathematical model on concentration distribution is developed for a steady, uniform open channel turbulent flow laden with sediments by incorporating the effect of secondary current through velocity distribution together with the stratification effect due to presence of sediments. The effect of particle-particle interaction at reference level and the effect of incipient motion probability, non-ceasing probability and pick-up probability of the sediment particles at reference concentration are taken into account. The proposed model is compared with the Rouse equation as well as verified with existing experimental data. Good agreement between computed value and experimental data indicates that secondary current influences the suspension of particles significantly. The direction and magnitude (strength) of secondary current lead to different patterns of concentration distribution and theoretical analysis shows that type II profile (where maximum concentration appears at significant height above channel bed surface) always corresponds to upward direction and greater magnitude of secondary current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Karcz I (1981) Reflections on the origin of small scale longitudinal streambed scours. In: Morisawa M (ed) Fluvial geomorphology: a proceedings of the fourth annual geomorphology symposia series. Allen and Unwin, London, pp 149–177

    Google Scholar 

  2. Sambrook Smith GH, Ferguson RI (1996) The gravel-sand transition: flume study of channel response to reduce slope. Geomorphology 16:147–159. doi:10.1016/0169-555X(95)00140-Z

    Article  Google Scholar 

  3. Liao K, Qu J, Tang J, Ding F, Liu H, Zhu S (2010) Activity of wind-blown sand and the formation of feathered sand Ridges in the Kumtagh Desert, China. Boundary Layer Meteorol 135:333–350. doi:10.1007/s10546-010-9469-0

    Article  Google Scholar 

  4. Colombini M (1993) Turbulence driven secondary flows and the formation of sand ridges. J Fluid Mech 254:701–719. doi:10.1017/S0022112093002319

    Article  Google Scholar 

  5. Nezu I, Nakagawa H, Kawashima N (1988) Cellular secondary currents and sand ribbons in fluvial channel flows. In: Proceedings of the 6th Congress APD-IAHR, Madrid, vol 2, pp 51–58

  6. Wang ZQ, Cheng NS (2006) Time-mean structure of secondary flows in open channel with longitudinal bedforms. Adv Water Resour 29(11):1634–1649

    Article  Google Scholar 

  7. Prandtl L (1925) Uber die ausgebildete Turbulenz. Z Angew Math Mech 5:136–139

    Google Scholar 

  8. Blanckaert K, Graf WH (2004) Momentum transport in sharp openchannel bends. J Hydraul Eng 130(3):186–198. doi:10.1061/(ASCE)0733-9429

    Google Scholar 

  9. Guo J, Julien PY (2001) Turbulent velocity profiles in sediment-laden flows. J Hydraul Res 39(1):11–23

    Article  Google Scholar 

  10. Yang SQ, Tan SK, Lim SY (2004) Velocity distribution and dip-phenomenon in smooth uniform open channel flows. J Hydraul Eng 130(12):1179–1186

    Article  Google Scholar 

  11. Kundu S, Ghoshal K (2012) An analytical model for velocity distribution and dip-phenomenon in uniform open channel flows. Int J Fluid Mech Res 39(5):381–395

    Article  Google Scholar 

  12. Rouse H (1937) Modern concepts of the mechanics of turbulence. Trans ASCE 102:463–543

    Google Scholar 

  13. Umeyama M (1992) Vertical distribution od suspended sediment in uniform open-channel flow. J Hydraul Eng 118(6):936–941

    Article  Google Scholar 

  14. Mazumder BS, Ghoshal K (2006) Velocity and concentration profiles in uniform sediment-laden flow. Appl Math Model 30(1):164–176

    Article  Google Scholar 

  15. Bose SK, Dey S (2009) Suspended load in flows on erodible bed. Int J Sed Res 24:315–324

    Article  Google Scholar 

  16. Cao Z, Wei L, Xie J (1995) Sediment-laden flow in open channels from two-phase flow viewpoint. J Hydraul Eng 121(10):725–735

    Article  Google Scholar 

  17. Chiu CL, McSparran JE (1966) Effect of secondary flow on sediment transport. Proc Am Soc Civ Eng 92:HY5

    Google Scholar 

  18. Yang SQ (2007) Turbulent transfer mechanism in sediment-laden flow. J Geophys Res 112:F01005. doi:10.1029/2005JF000452

    Google Scholar 

  19. Steinour HH (1944) Rate of sedimentation-non flocculated suspensions of uniform spheres. Ind Eng Chem 36(7):618–24. doi:10.1021/ie50415a005

    Article  Google Scholar 

  20. Hawksley PGW (1951) The effect of concentration on the settling of suspensions and flow through porous media. In: Arnold Edward (ed) Some aspects of fluid flow. Edward Arnold, London, pp 114–135

    Google Scholar 

  21. Fu X, Wang G, Shao X (2005) Vertical dispersion of fine and coarse sediment in turbulent open channel flows. J Hydraul Eng 131(10):877–888

    Article  Google Scholar 

  22. Bouvard M, Petkovic S (1985) Vertical dispersion of spherical, heavy particles in turbulent open channel flow. J Hydraul Res 23(1):5–20

    Article  Google Scholar 

  23. Michalik A (1973) Density patterns of the inhomogeneous liquids in the industrial pipeline measured by means of radiometric scanning. La Houille Blanche 1:53–59

    Article  Google Scholar 

  24. Ni JR, Wang GQ, Borthwick AGL (2000) Kinetic theory for particles in dilute and dense solid-liquid flows. J Hydraul Eng 126(12):893–903

    Article  Google Scholar 

  25. Wang GQ, Ni JR (1990) Kinetic theory for particle concentration distribution in two-phase flows. J Eng Mech 116(12):2738–2748

    Article  Google Scholar 

  26. Wang GQ, Fu X (2004) Mechanics of particle vertical diffusion in sediment-laden flows. Chin Sci Bull 49(10):1086–1090

    Article  Google Scholar 

  27. Liu QQ, Shu AP, Singh VP (2007) Analysis of the vertical profile of concentration in sediment-laden flows. J Eng Mech 133(6):601–607

    Article  Google Scholar 

  28. Kaushal DR, Tomita Y (2007) Experimental investigation for near-wall lift of coarse particles in slurry pipeline using \(\gamma \)-ray densitometer. Powder Technol 172:177–187

    Article  Google Scholar 

  29. Ghoshal K (2004) On velocity and suspension concentration in a sediment-laden flow: experimental and theoretical studies. Dissertation, Indian Statistical Institute, Kolkata

  30. Glenn SM (1983) A contenental shelf bottom boundary layer model: the effects of waves, currents and a moveable bed. Dissertation, Woods Hole Oceanographic Institute/Massachusetts Institute of Technology

  31. Ohmoto T, Cui Z, Hirakawa R (2004) Effects of secondary currents on suspended sediment transport in an open channel flow. In: Jirka GH, Uijttewaal WSJ (eds) International symposium on shallow flows. Taylor and Francis, Delft, pp 511–516

    Chapter  Google Scholar 

  32. Coleman NL (1986) Effects of suspended sediment on the open-channel velocity distribution. Water Resour Res 22(10):1377–1384

    Article  Google Scholar 

  33. Einstein HA, Chien NS (1955) Effects of heavy sediment concentration near the bed on velocity and sediment distribution. US Army Corps of Engineers, Missouri River Division, report no 8

  34. Wang X, Qian N (1989) Turbulence characteristics of sediment-laden flow. J Hydraul Eng 115(6):781–800

    Article  Google Scholar 

  35. Muste M, Patel VC (1997) Velocity profiles for particles and liquid in open channel flow with suspended sediment. J Hydraul Eng 123(9):742–751

    Article  Google Scholar 

  36. Cellino M, Graf WH (1999) Sediment-laden flow in open-channels under noncapacity and capacity conditions. J Hydraul Eng 125(5):455–462

    Article  Google Scholar 

  37. Muste M, Yu K, Fujita I, Ettema R (2005) Two-phase versus mixed-flow perspective on suspended sediment transport in turbulent channel flows. Water Resour Res 41:W10402. doi:10.1029/2004WR003595

    Article  Google Scholar 

  38. Best J, Bennett S, Bridge J, Leeder M (1997) Turbulence modulation and particle velocities over flat sand beds at low transport rates. J Hydraul Eng 123(12):1118–1129

    Article  Google Scholar 

  39. Graf WH, Cellino M (2002) Suspension flows in open channels: experimental study. J Hydraul Res 40(4):435–447

    Article  Google Scholar 

  40. Righetti M, Romano GP (2004) Particle-fluid interactions in a plane near-wall turbulent flow. J Fluid Mech 505:93–121

    Article  Google Scholar 

  41. Smith JD, McLean S (1977) Spatially averaged flow over a wavy. J Geophys Res 82(12):17351746

    Google Scholar 

  42. Herrmann MJ, Madsen OS (2007) Effect of stratification due to suspended sand on velocity and concentration distribution in unidirectional flows. J Geophys Res 112:C02006. doi:10.1029/2006JC003569

    Google Scholar 

  43. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189. doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2

    Google Scholar 

  44. Monin AS, Yaglom AM (1971) Stat Fluid Mech. MIT Press, Cambridge

    Google Scholar 

  45. Styles R, Glenn SM (2000) Modeling stratified wave and current bottom boundary layers on the continental shelf. J Geophys Res 105(C10):24119–24139

    Article  Google Scholar 

  46. Carstens MR (1952) Accelerated motion of a spherical particle. Trans AGU 33(5):713–721

    Article  Google Scholar 

  47. Jobson HE, Sayre WW (1979) Predicting concentration in open channels. J Hydraul Div 96(HY10):1983–1996

    Google Scholar 

  48. Yoon JY, Kang SK (2005) A numerical model of sediment-laden turbulent flow in an open channel. Can J Civ Eng 32(1):233–240

    Article  Google Scholar 

  49. Huang S, Sun Z, Xu D, Xia S (2008) Vertical distribution of sediment concentration. J Zhejiang Univ Sci 9(11):1560–1566

    Article  Google Scholar 

  50. Bonakdari H, Larrarte F, Lassabatere L, Joannis C (2008) Turbulent velocity profile in fully-developed open channel flows. Environ Fluid Mech 8:1–17

    Article  Google Scholar 

  51. Bogardi J (1974) Sediment transport in alluvial streams. Akademial Kiodo, Budapest

    Google Scholar 

  52. Soulsby R (1997) Dynamics of marine sands. Thomas Telford, London

    Google Scholar 

  53. Nikuradse J (1950) Laws of flow in rough pipes, translation in National Advisory Committee for Aeronautics, Technical Memorandum 1292. NACA, Washington, p 62

    Google Scholar 

  54. Jan CD, Wang JS, Chen TH (2006) Discussion of simulation of flow and mass dispersion in meandering channel. J Hydraul Eng 132(3):339–342

    Article  Google Scholar 

  55. Francis JB (1878) On the cause of the maximum velocity of water flowing in open channels being below the surface. Trans ASCE 7(1):109–113

    Google Scholar 

  56. Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. Balkema, IAHR-Monograph

    Google Scholar 

  57. Yang SQ (2005) Interactions of boundary shear stress, secondary current and velocity. Fluid Dyn Res 36:121–136

    Article  Google Scholar 

  58. Yang SQ, Tan SK, Wang XK (2012) Mechanism of secondary currents in open channel flows. J Geophys Res 117:F04014. doi:10.1029/2012JF002510

    Google Scholar 

  59. Coleman JM (1969) Brahmaputra river; channel process and sedimentation. Sed Geol 3:129–239

    Article  Google Scholar 

  60. Ghoshal K, Kundu S (2013) Influence of secondary current on vertical concentration distribution in an open channel flow. J Hydraul Eng 19(2):88–96

    Google Scholar 

  61. Zhiyao S, Tingting W, Fumin X, Ruijie L (2008) A simple formula for predicting settling velocity of sediment particles. Water Sci Eng 1(1):37–43

    Google Scholar 

  62. Sun ZL, Sun ZF, Donahue J (2003) Equilibrium bed-concentration of nonuniform sediment. J Zhejiang Univ Sci 4(2):186–194

    Article  Google Scholar 

  63. Cheng NS (2003) A diffusive model for evaluating thickness of bedload layer. Adv Water Resour 26(8):875–882

    Article  Google Scholar 

  64. Van Rijn LC (1984) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456

    Article  Google Scholar 

  65. Garcia M, Parker G (1991) Entrainment of bed sediment into suspension. J Hydraul Eng 117(4):414–435

    Article  Google Scholar 

  66. Richardson JF, Zaki WN (1954) Sedimantation and fluidization part I. Trans Inst Chem Eng 32:35–53

    Google Scholar 

  67. Absi R (2010) Concentration profiles for fine and coarse sediments suspended by waves over ripples: an analytical study with the 1-DV gradient diffusion model. Adv Water Resour 33:411–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koeli Ghoshal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, S., Ghoshal, K. Effects of secondary current and stratification on suspension concentration in an open channel flow. Environ Fluid Mech 14, 1357–1380 (2014). https://doi.org/10.1007/s10652-014-9341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-014-9341-8

Keywords

Navigation