Skip to main content
Log in

A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

In ecology and evolutionary biology, controlled animal experiments are often conducted to measure time to metamorphosis which is possibly censored by the competing risk of death and the follow-up end. This paper considers the problem of estimating the survival function of time-to-event when it is subject to dependent censoring. When the censorship is due to competing risks, the traditional assumption of independent censorship may not be satisfied, and hence, the usual application of the Kaplan–Meier estimator yields a biased estimation for the survival function of the event time. This paper follows an assumed copula approach (Zheng and Klein in Biometrika 82(1):127–138, 1995) to adjust for dependence between the event time of interest and the competing event time. While the literature on an assumed copula approach has mostly focused on semiparametric settings, we alternatively consider a parametric approach with piecewise exponential models for fitting the survival function. We develop maximum likelihood estimation under the piecewise exponential models with an assumed copula. A goodness-of-fit procedure is also developed, which touches upon the identifiability issue of the copula. We conduct simulations to examine the performance of the proposed method and compare it with an existing semiparametric method. The method is applied to real data analysis on time to metamorphosis for salamander larvae living in Hokkaido, Japan (Michimae et al. in Evol Ecol Res 16:617–629, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen PK, Abildstrom SZ, Rosthøj S (2002) Competing risks as a multi-state model. Stat Methods Med Res 11(2):203–215

    Article  PubMed  Google Scholar 

  • Bakoyannis G, Touloumi G (2012) Practical methods for competing risks data: a review. Stat Methods Med Res 21(3):257–272

    Article  PubMed  Google Scholar 

  • Bakoyannis G, Touloumi G (2015) Impact of dependent left truncation in semiparametric competing risks methods: a simulation study. Commun Stat Simul Comput. doi:10.1080/03610918.2015.1030415

    Google Scholar 

  • Basu AP, Ghosh JK (1978) Identifiability of the multinormal and other distributions under competing risks model. J Multivar Anal 8:413–429

    Article  Google Scholar 

  • Braekers R, Veraverbeke N (2005) A copula-graphic estimator for the conditional survival function under dependent censoring. Can J Stat 33:429–447

    Article  Google Scholar 

  • Buyse M, Sargent DJ, Saad ED (2011) Survival is not a good outcome for randomized trials with effective subsequent therapies. J Clin Oncol 29(35):4719–4720

    Article  PubMed  Google Scholar 

  • Chaieb LL, Rivest LP, Abdous B (2006) Estimating survival under a dependent truncation. Biometrika 93:665–669

    Article  Google Scholar 

  • Chen YH (2010) Semiparametric marginal regression analysis for dependent competing risks under an assumed copula. J R Stat Soc Ser B 72:235–251

    Article  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65:141–151

    Article  Google Scholar 

  • Crowder MJ (2001) Classical competing risks. CRC Press, Boca Raton

    Book  Google Scholar 

  • Crowder MJ (2012) Multivariate survival analysis and competing risks. CRC Press, Boca Raton

    Book  Google Scholar 

  • David HA, Moeschberger ML (1978) The theory of competing risks, vol 39. Griffin, London

    Google Scholar 

  • De Uña-Álvarez J, Veraverbeke N (2013) Generalized copula-graphic estimator. Test 22(2):343–360

    Article  Google Scholar 

  • De Uña-Álvarez J, Veraverbeke N (2017) Copula-graphic estimation with left-truncated and right-censored data. Statistics. doi:10.1080/02331888.2016.1274898

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, London

    Book  Google Scholar 

  • Emura T, Wang W (2012) Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. J Multivar Anal 110:171–188

    Article  Google Scholar 

  • Emura T, Murotani K (2015) An algorithm for estimating survival under a copula-based dependent truncation model. TEST 24(4):734–751

    Article  Google Scholar 

  • Emura T, Chen YH (2016) Gene selection for survival data under dependent censoring: a copula-based approach. Stat Methods Med Res 25(6):2840–2857

    Article  PubMed  Google Scholar 

  • Emura T, Nakatochi M, Murotani K, Rondeau V (2015) A joint frailty-copula model between tumour progression and death for meta-analysis. Stat Methods Med Res. doi:10.1177/0962280215604510

    PubMed  Google Scholar 

  • Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2017) Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model. Stat Methods Med Res. doi:10.1177/0962280216688032

  • Escarela G, Carriere JF (2003) Fitting competing risks with an assumed copula. Stat Methods Med Res 12(4):333–349

    Article  PubMed  Google Scholar 

  • Fieberg J, DelGiudice GD (2011) Estimating age-specific hazards from wildlife telemetry data. Environ Ecol Stat 18(2):209–222

    Article  Google Scholar 

  • Friedman M (1982) Piecewise exponential models for survival data with covariates. Ann Stat 10:101–113

    Article  Google Scholar 

  • Heckman JJ, Honore BE (1989) The identifiability of the competing risks models. Biometrika 76:325–330

    Article  Google Scholar 

  • Hsu TM, Emura T, Fan TH (2016) Reliability inference for a copula-based series system life test under multiple type-I censoring. IEEE Trans Reliab 65(2):1069–1080

    Article  Google Scholar 

  • Joe H (1993) Parametric families of multivariate distributions with given margins. J Multivar Anal 46:262–282

    Article  Google Scholar 

  • Kalbfleisch JD, Prentice RL (1973) Marginal likelihoods based on Cox’s regression and life model. Biometrika 60(2):267–278

    Article  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, Hoboken

    Book  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    Article  Google Scholar 

  • Klein JP, Moeschberger ML (2003) Survival analysis techniques for censored and truncated data. Springer, New York

    Google Scholar 

  • Kuparinen A, O’Hara RB, Merilä J (2008) Probabilistic models for continuous ontogenetic transition processes. PLoS ONE 3(11):e3677

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data, 2nd edn. Wiley, New York

    Google Scholar 

  • Michimae H, Tezuka A, Emura T, Kishida O (2014) Environment-dependent trade-offs and phenotypic plasticity in metamorphic timing. Evol Ecol Res 16:617–629

    Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer series in statistics, 2nd edn. Springer, New York

    Google Scholar 

  • Pazdur R (2008) Endpoints for assessing drug activity in clinical trials. Oncologist 13:19–21

    Article  PubMed  Google Scholar 

  • Rivest LP, Wells MT (2001) A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. J Multivar Anal 79:138–155

    Article  Google Scholar 

  • Rose CS (2005) Integrating ecology and developmental biology to explain the timing of frog metamorphosis. Trends Ecol Evolut 20(3):129–135

    Article  Google Scholar 

  • Staplin ND, Kimber AC, Collett D, Roderick PJ (2015) Dependent censoring in piecewise exponential survival models. Stat Methods Med Res 24(3):325–341

    Article  CAS  PubMed  Google Scholar 

  • Tsiatis A (1975) A nonidentifiability aspect of the problem of competing risks. PNAS USA 72:20–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82(1):127–138

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and two anonymous reviewers for their helpful comments that improved the paper. This work was supported by Ministry of Science and Technology, Taiwan (MOST 103-2118-M-008-MY2 and 105-2118-M-008-001-MY2 for T. Emura) and Grants-in-Aid for a Research Fellow of the Japan Society for the Promotion of Science (no. 23570036 for H. Michimae).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Emura.

Additional information

Handling Editor Pierre Dutilleul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emura, T., Michimae, H. A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environ Ecol Stat 24, 151–173 (2017). https://doi.org/10.1007/s10651-017-0364-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-017-0364-4

Keywords

Navigation