Skip to main content
Log in

Problem-solving or Explicit Instruction: Which Should Go First When Element Interactivity Is High?

  • Intervention Study
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

The concept of productive failure posits that a problem-solving phase prior to explicit instruction is more effective than explicit instruction followed by problem-solving. This prediction was tested with Year 5 primary school students learning about light energy efficiency. Two, fully randomised, controlled experiments were conducted. In the first experiment (N = 64), explicit instruction followed by problem-solving was found to be superior to the reverse order for performance on problems similar to those used during instruction, with no difference on transfer problems. In the second experiment, where element interactivity was increased (N = 71), explicit instruction followed by problem-solving was found to be superior to the reverse order for performance on both similar and transfer problems. The contradictory predictions and results of a productive failure approach and cognitive load theory are discussed using the concept of element interactivity. Specifically, for learning where element interactivity is high, explicit instruction should precede problem-solving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chen, O., Kalyuga, S., & Sweller, J. (2015). The worked example effect, the generation effect, and element interactivity. Journal of Educational Psychology, 107(3), 689–704.

    Article  Google Scholar 

  • Chen, O., Kalyuga, S., & Sweller, J. (2016a). Relations between the worked example and generation effects on immediate and delayed tests. Learning and Instruction, 45, 20–30.

    Article  Google Scholar 

  • Chen, O., Kalyuga, S., & Sweller, J. (2016b). When instructional guidance is needed. Educational and Developmental Psychologist, 33(2), 149–162.

    Article  Google Scholar 

  • Chen, O., Kalyuga, S., & Sweller, J. (2017). The expertise reversal effect is a variant of the more general element interactivity effect. Educational Psychology Review, 29(2), 393–405. https://doi.org/10.1007/s10648-016-9359-1.

    Article  Google Scholar 

  • Chen, O., Castro-Alonso, J. C., Paas, F., & Sweller, J. (2018). Extending cognitive load theory to incorporate working memory resource depletion: evidence from the spacing effect. Educational Psychology Review, 30(2), 483–501. https://doi.org/10.1007/s10648-017-9426-2.

    Article  Google Scholar 

  • Cook, M. A. (2017). A comparison of the effectiveness of worked examples and productive failure in learning procedural and conceptual knowledge related to statistics (Order No. 10666475). Available from ProQuest Dissertations & Theses Global. (1984948629).

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.

    Article  Google Scholar 

  • Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34(4), 344–377.

    Article  Google Scholar 

  • DeCaro, M. S., & Rittle-Johnson, B. (2012). Exploring mathematics problems prepares children to learn from instruction. Journal of Experimental Child Psychology, 113(4), 552–568.

    Article  Google Scholar 

  • Fyfe, E. R., DeCaro, M. S., & Rittle-Johnson, B. (2014). An alternative time for telling: when conceptual instruction prior to problem solving improves mathematical knowledge. British Journal of Educational Psychology, 84(3), 502–519.

    Article  Google Scholar 

  • Geary, D. (2008). An evolutionarily informed education science. Educational Psychologist, 43(4), 179–195.

    Article  Google Scholar 

  • Geary, D., & Berch, D. (2016). Evolution and children’s cognitive and academic development. In D. Geary & D. Berch (Eds.), Evolutionary perspectives on child development and education (pp. 217–249). Switzerland: Springer.

    Chapter  Google Scholar 

  • Glogger-Frey, I., Fleischer, C., Grüny, L., Kappich, J., & Renkl, A. (2015). Inventing a solution and studying a worked solution prepare differently for learning from direct instruction. Learning and Instruction, 39, 72–87.

    Article  Google Scholar 

  • Glogger-Frey, I., Gaus, K., & Renkl, A. (2017). Learning from direct instruction: best prepared by several self-regulated or guided invention activities? Learning and Instruction, 51, 26–35.

    Article  Google Scholar 

  • Hirshman, E., & Bjork, R. A. (1988). The generation effect: support for a two-factor theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 484.

    Google Scholar 

  • Ho, J., Tumkaya, T., Aryal, S., Choi, H., & Claridge-Chang, A. (2018). Moving beyond P values: everyday data analysis with estimation plots. bioRxiv, 377978.

  • Hsu, C.-Y., Kalyuga, S., & Sweller, J. (2015). When should guidance be presented in physics instruction? Archives of Scientific Psychology, 3(1), 37–53.

    Article  Google Scholar 

  • Hwang, J., Choi, K. M., Bae, Y., Dong, & Shin, H. (2018). Do teachers’ instructional practices moderate equity in mathematical and scientific literacy? An investigation of the PISA 2012 and 2015. International Journal of Science and Mathematics Education. Advance online publication. https://doi.org/10.1007/s10763-018-9909-8.

    Article  Google Scholar 

  • Jacobson, M. J., Markauskaite, L., Portolese, A., Kapur, M., Lai, P. K., & Roberts, G. (2017). Designs for learning about climate change as a complex system. Learning and Instruction, 52, 1–14.

    Article  Google Scholar 

  • Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93(3), 579–588.

    Article  Google Scholar 

  • Kapur, M. (2012). Productive failure in learning the concept of variance. Instructional Science, 40(4), 651–672.

    Article  Google Scholar 

  • Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008–1022.

    Article  Google Scholar 

  • Kapur, M. (2016). Examining productive failure, productive success, unproductive failure, and unproductive success in learning. Educational Psychologist, 51(2), 289–299.

    Article  Google Scholar 

  • Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21(1), 45–83. https://doi.org/10.1080/10508406.2011.591717.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Article  Google Scholar 

  • Lai, P. K., Portolese, A., & Jacobson, M. J. (2017). Does sequence matter? Productive failure and designing online authentic learning for process engineering. British Journal of Educational Technology, 48(6), 1217–1227.

    Article  Google Scholar 

  • Leppink, J., Paas, F., Van Gog, T., Van der Vleuten, C., & Van Merrienboer, J. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32–42.

    Article  Google Scholar 

  • Loibl, K., & Rummel, N. (2014a). The impact of guidance during problem-solving prior to instruction on students’ inventions and learning outcomes. Instructional Science, 42(3), 305–326.

    Article  Google Scholar 

  • Loibl, K., & Rummel, N. (2014b). Knowing what you don’t know makes failure productive. Learning and Instruction, 34, 74–85.

    Article  Google Scholar 

  • Martin, A. J. (2016). Using load reduction instruction (LRI) to boost motivation and engagement. Leicester: British Psychological Society.

    Google Scholar 

  • Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59(1), 14–19.

    Article  Google Scholar 

  • Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118(3), 219–235.

    Article  Google Scholar 

  • Rittle-Johnson, B., Fyfe, E. R., & Loehr, A. M. (2016). Improving conceptual and procedural knowledge: the impact of instructional content within a mathematics lesson. British Journal of Educational Psychology, 86(4), 576–591.

    Article  Google Scholar 

  • Rosenshine, B. (2009). The empirical support for direct instruction. In S. Tobias and T. Duffy (Eds.) Constructivist instruction: success or failure? (pp. 201–220). New York: Routledge. https://doi.org/10.1037/0003-066X.59.1.14, 59, 1.

    Chapter  Google Scholar 

  • Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16(4), 475–522.

    Article  Google Scholar 

  • Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: the hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184.

    Article  Google Scholar 

  • Schwartz, D. L., Lindgren, R., & Lewis, S. (2009). Constructivism in an age of non-constructivist assessments. In Constructivist Instruction (pp. 46-73). Routledge.

  • Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing with contrasting cases: the effects of telling first on learning and transfer. Journal of Educational Psychology, 103(4), 759–775.

    Article  Google Scholar 

  • Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., & Salden, R. (2009). The worked-example effect: not an artefact of lousy control conditions. Computers in Human Behavior, 25(2), 258–266.

    Article  Google Scholar 

  • Slamecka, N. J., & Graf, P. (1978). The generation effect: delineation of a phenomenon. Journal of Experimental Psychology: Human Learning and Memory, 4(6), 592.

    Google Scholar 

  • Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational Psychology Review, 22(2), 123–138.

    Article  Google Scholar 

  • Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185–233.

    Article  Google Scholar 

  • Sweller, J., & Paas, F. (2017). Should self-regulated learning be integrated with cognitive load theory? A commentary. Learning and Instruction, 51, 85–89.

    Article  Google Scholar 

  • Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434–458.

    Article  Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Book  Google Scholar 

  • Sweller, J., van Merriënboer, J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31(2), 261–292.

    Article  Google Scholar 

  • Van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36(3), 212–218. https://doi.org/10.1016/j.cedpsych.2010.10.004.

    Article  Google Scholar 

  • Weaver, J. P., Chastain, R. J., DeCaro, D. A., & DeCaro, M. S. (2018). Reverse the routine: problem solving before instruction improves conceptual knowledge in undergraduate physics. Contemporary Educational Psychology, 52, 36–47.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the students, parents, staff, and leadership team of the Ballarat Clarendon College for their support with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Ashman.

Ethics declarations

Prior to the study, approval was obtained from the Human Research Ethics Advisory Panel of the lead author’s institution.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashman, G., Kalyuga, S. & Sweller, J. Problem-solving or Explicit Instruction: Which Should Go First When Element Interactivity Is High?. Educ Psychol Rev 32, 229–247 (2020). https://doi.org/10.1007/s10648-019-09500-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-019-09500-5

Keywords

Navigation