Skip to main content
Log in

Managing Element Interactivity in Equation Solving

  • Intervention Study
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

An Erratum to this article was published on 24 February 2017

This article has been updated

Abstract

Between two popular teaching methods (i.e., balance method vs. inverse method) for equation solving, the main difference occurs at the operational line (e.g., +2 on both sides vs. −2 becomes +2), whereby it alters the state of the equation and yet maintains its equality. Element interactivity occurs on both sides of the equation in the balance method, but only on one side in the case of the inverse method. Thus, the balance method imposes twice as many interacting elements as the inverse method for each operational line. In two experiments, secondary students were randomly assigned to either the balance method or the inverse method to learn how to solve one-step, two-step, and three-or-more-step linear equations. Test results indicated that the interaction between method and type of equation favored the inverse method for equations involving higher element interactivity. Hence, by managing element interactivity, the efficiency of instruction for equation solving can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 February 2017

    An erratum to this article has been published.

References

  • Asquith, P., Stephens, A. C., Knuth, E. J., & Alibali, M. W. (2007). Middle school mathematics teachers’ knowledge of students’ understanding of core algebraic concepts: equal sign and variable. Mathematical Thinking and Learning, 9(3), 249–272. doi:10.1080/10986060701360910.

    Article  Google Scholar 

  • Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied Cognitive Psychology, 20(3), 287–298. doi:10.1002/acp.1245.

    Article  Google Scholar 

  • Blayney, P., Kalyuga, S., & Sweller, J. (2010). Interactions between the isolated–interactive elements effect and levels of learner expertise: experimental evidence from an accountancy class. Instructional Science, 38(3), 277–287. doi:10.1007/s11251-009-9105-x.

    Article  Google Scholar 

  • Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Ng, S. F., & Schmittau, J. (2005). The development of students’ algebraic thinking in earlier grades: a cross-cultural comparative perspective. ZDM - The International Journal on Mathematics Education, 37, 5–15.

    Article  Google Scholar 

  • Carlson, R., Chandler, P., & Sweller, J. (2003). Learning and understanding science instructional material. Journal of Educational Psychology, 95(3), 629–640. doi:10.1037/0022-0663.95.3.629.

    Article  Google Scholar 

  • Chen, O., Kalyuga, S., & Sweller, J. (2016). The expertise reversal effect is a variant of the more general element interactivity effect. Educational Psychology Review, 1–13.

  • Cohen, J. (1988). Statistical power analysis for behavioral sciences. New Jersey: Lawrence Erlbaum Association.

    Google Scholar 

  • Cramer, K., & Wyberg, T. (2009). Efficacy of different concrete models for teaching the part-whole construct for fractions. Mathematical Thinking and Learning, 11, 226–257. doi:10.1080/10986060903246479.

    Article  Google Scholar 

  • Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: molar versus modular presentation of solution procedures. Instructional Science, 32(1–2), 33–58. doi:10.1023/b:truc.0000021809.10236.71.

    Article  Google Scholar 

  • Gopher, D., & Braune, R. (1984). On the psychophysics of workload: why bother with subjective measures? Human Factors: The Journal of the Human Factors and Ergonomics Society, 26(5), 519–532.

    Article  Google Scholar 

  • Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37(4), 297–312. doi:10.2307/30034852.

    Google Scholar 

  • Leahy, W., & Sweller, J. (2008). The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, 22(2), 273–283. doi:10.1002/acp.1373.

    Article  Google Scholar 

  • Linchevski, L., & Williams, J. (1999). Using intuition from everyday life in ‘filling’ the gap in children’s extension of their number concept to include the negative numbers. Educational Studies in Mathematics, 39(1/3), 131–147. doi:10.2307/3483164.

    Article  Google Scholar 

  • Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages through pre-training: evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology: Applied, 8(3), 147–154. doi:10.1037/0022-0663.84.4.444.

    Google Scholar 

  • McSeveny, A., Conway, R., & Wilkes, S. (2004). New signpost mathematics 8. Melbourne: Pearson Education Australia.

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. doi:10.1037/h0043158.

    Article  Google Scholar 

  • Mock, J., & Wade, J. (2004). About maths. Sydney: Science Press.

    Google Scholar 

  • Naismith, L. M., Cheung, J. J., Ringsted, C., & Cavalcanti, R. B. (2015). Limitations of subjective cognitive load measures in simulation-based procedural training. Medical Education, 49(8), 805–814.

    Article  Google Scholar 

  • Ngu, B. H., & Phan, H. P. (2016a). Unpacking the complexity of linear equations from a cognitive load theory perspective. Educational Psychology Review, 28, 95–118.

  • Ngu, B. H., & Phan, H. P. (2016b). Comparing balance and inverse methods on learning conceptual and procedural knowledge in equation solving: A Cognitive load perspective. Pedagogies: An International Journal, 11(1), 63–83.

  • Ngu, B. H., Chung, S. F., & Yeung, A. S. (2015). Cognitive load in algebra: element interactivity in solving equations. Educational Psychology, 35(3), 271–293.

  • Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. Journal of Educational Psychology, 84(4), 429.

    Article  Google Scholar 

  • Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71. doi:10.1207/s15326985ep3801_8.

    Article  Google Scholar 

  • Parker, M., & Leinhardt, G. (1995). Percent: a privileged proportion. Review of Educational Research, 65(4), 421–481. doi:10.3102/00346543065004421.

    Article  Google Scholar 

  • Pillay, H., Wilss, L., & Boulton-Lewis, G. (1998). Sequential development of algebra knowledge: a cognitive analysis. Mathematics Education Research Journal, 10(2), 87–102. doi:10.1007/bf03217344.

    Article  Google Scholar 

  • Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12(1), 61–86. doi:10.1016/s0959-4752(01)00016-0.

    Article  Google Scholar 

  • Reed, S. K. (1987). A structure-mapping model for word problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(1), 124–139. doi:10.1016/0010-0285(80)90013-4.

    Google Scholar 

  • Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: does one lead to the other? Journal of Educational Psychology, 91(1), 175–189. doi:10.1037/0022-0663.91.1.175.

    Article  Google Scholar 

  • Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99, 561–574. doi:10.1037//1082-989x.7.2.147.

    Article  Google Scholar 

  • Star, J., & Newton, K. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM, 41(5), 557–567. doi:10.1007/s11858-009-0185-5.

    Article  Google Scholar 

  • Sweller, J. (2012). Human cognitive architecture: why some instructional procedures work and others do not. In K. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook, (vol. 1, pp. 295–325). Washington, D.C: American Psychological Association.

    Google Scholar 

  • Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2(1), 59–89. doi:10.1207/s1532690xci0201_3.

    Article  Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Book  Google Scholar 

  • van Gog, T., & Paas, F. (2008). Instructional efficiency: revisiting the original construct in educational research. Educational Psychologist, 43(1), 16–26. doi:10.1080/00461520701756248.

    Article  Google Scholar 

  • van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36(3), 212–218. doi:10.1016/j.cedpsych.2010.10.004.

    Article  Google Scholar 

  • Warren, E., & Cooper, T. J. (2009). Developing mathematics understanding and abstraction: the case of equivalence in the elementary years. Mathematics Education Research Journal, 21, 76–95. doi:10.1007/bf03217546.

    Article  Google Scholar 

  • Young, J. Q., Irby, D. M., Barilla-LaBarca, M.-L., ten Cate, O., & O’Sullivan, P. S. (2016). Measuring cognitive load: mixed results from a handover simulation for medical students. Perspectives on medical education, 5(1), 24–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Hiong Ngu.

Additional information

The original version of this article was revised: Alignment of Tables 1 and 3 entries were incorrect.

An erratum to this article is available at https://doi.org/10.1007/s10648-017-9402-x.

Electronic supplementary material

ESM 1

(DOCX 175 kb).

ESM 2

(DOCX 23 kb).

ESM 3

(DOCX 19 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngu, B.H., Phan, H.P., Yeung, A.S. et al. Managing Element Interactivity in Equation Solving. Educ Psychol Rev 30, 255–272 (2018). https://doi.org/10.1007/s10648-016-9397-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-016-9397-8

Keywords

Navigation