Skip to main content
Log in

A mixture of pesticides at environmental concentrations induces oxidative stress and cholinergic effects in the neotropical fish Rhamdia quelen

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The insecticides imidacloprid (IMI), a neonicotinoid, and propoxur (PRO), an N-methylcarbamate compound, are pesticides widely used throughout the world. Although they are not used together to combat pests, both are often found in freshwater near agricultural areas. Thereby, the goal of this study was to evaluate the additive effects of IMI and PRO mixtures at environmental concentrations in relation to isolated compounds on Rhamdia quelen, a neotropical fish. The fish was exposed to IMI (0.11 µg/L), PRO (0.039 µg/L), or Mix (0.11 µg/L IMI plus 0.039 µg/L PRO) during 96 h. Glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), acetylcholinesterase (AChE) activities were determined. To verify oxidative damage thiobarbituric acid reactive substances (TBARS), protein carbonyl (PC), reactive oxygen species contents (ROS), antioxidant capacity against peroxides (ACAP) were determined in gills, liver, brain and muscle. The results shows that a mixture of these pesticides at environmental concentrations inhibited acetylcholinesterase activity in the brain and induced oxidative damage in all analyzed tissues. These results reinforce the hypothesis that mixture of contaminants present in environment could induce additive or synergistic effects on fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amado LL, Garcia ML, Ramos PB, Freitas RF, Zafalon B, Ferreira JLR, Yunes JS, Monserrat JM (2009) A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2008.11.038

  • ANVISA—Agência Nacional de Vigilância Sanitária (2019a) Monografias de agrotóxicos: imidacloprido. http://portal.anvisa.gov.br/documents/111215/117782/I13imidacloprido/9d08c7e5-8979-4ee9-b76c-1092899514d7. Accessed 16 Dec 2019

  • ANVISA—Agência Nacional de Vigilância Sanitária (2019b) Monografias de agrotóxicos: propoxur. http://portal.anvisa.gov.br/documents/111215/117782/p19.pdf/98a847cd-0eee-483d-b7ea-2dfbd382365f. Accessed 16 Dec 2019

  • Baldissera MD, Souza CF, Golombieski JI, Seben D, Sippert LR, Salbego J, Marchesan E, Zanella R, Baldisserotto B (2018a) Purinergic signaling as potential target of thiamethoxam-induced neurotoxicity using silver catfish (Rhamdia quelen) as experimental model. Mol Cell Biochem. https://doi.org/10.1007/s11010-018-3340-x

  • Baldissera MD, Souza CF, Seben D, Sippert LR, Salbego J, Marchesan E, Zanella R, Baldisserotto B, Golombieski JI (2018b) Gill bioenergetics dysfunction and oxidative damage induced by thiamethoxam exposure as relevant toxicological mechanisms in freshwater silver catfish Rhamdia quelen. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.04.292

  • Baldisserotto B (org), Barcellos LG, Fracalossi D, Kreutz L (2020) Jundiá: Rhamdia sp in Espécies Nativas para Piscicultura no Brasil. 3ª Edição revisada, atualizada e ampliada. Editora UFSM, Santa Maria, RS, p 544

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brauner EV, Raaschou-Nielsen O, Gaudreau E, Leblanc A, Tjønneland A, Overvad K, Sørensen M (2012) Predictors of adipose tissue concentrations of organochlorine pesticides in a general Danish population. J Expo Sci Env Epid 22:52–59. https://doi.org/10.1038/jes.2011.39

    Article  CAS  Google Scholar 

  • Cerezer C, Marins AT, Cerezer FO, Severo ES, Leitemperger JW, Bandeira NMG, Zanella R, Loro VL, Santos S (2020) Influence of pesticides and abiotic conditions on biochemical biomarkers in Aegla aff. longirostri (crustacea, anomura): implications for conservation. Ecotoxicol Environ Saf 203:110982. https://doi.org/10.1016/j.ecoenv.2020.110982

    Article  CAS  Google Scholar 

  • Crosby EB, Bailey JM, Oliveri AN, Levin ED (2015) Neurobehavioral impairments caused by developmental imidacloprid exposure in Zebrafish. Neurotoxicol Teratol 49:81–90. https://doi.org/10.1016/j.ntt.2015.04.006

    Article  CAS  Google Scholar 

  • Cunha MA, Zeppenfeld CC, Garcia LO, Loro VL, Fonseca MB, Emanuelli T, Veeck APL, Copattu CE, Baldisserotto B (2010) Anesthesia of silver catfish with eugenol: time of induction, cortisol response and sensory analysis of fillet. Ciência Rural 40(10):2107–2114

    Article  Google Scholar 

  • do Amaral AMB, Gomes JLC, Weimer GH, Marins AT, Loro VL, Zanella R (2018) Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere 191:876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114

    Article  CAS  Google Scholar 

  • Donato FF, Martins ML, Munaretto JS, Prestes OD, Adaime MB, Zanella R (2015) Development of a multiresidue method for pesticide analysis in drinking water by solid phase extraction and determination by gas and liquid chromatography with triple quadrupole tandem mass spectrometry. J Brazil Chem Soc. https://doi.org/10.5935/0103-5053.20150192

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Method Enzymol. https://doi.org/10.1016/0076-6879(90)86135-I

  • Ellman GL, Courtney D, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmachol 7:88–95

    Article  CAS  Google Scholar 

  • Felício A, Freitas J, Scarin J, Ondei L, Teresa F, Schelenk D, de Almeida E (2018) Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus). Ecotoxicol Environ Saf 149:248–256. https://doi.org/10.1016/j.ecoenv.2017.12.009

    Article  CAS  Google Scholar 

  • Frew JA, Brown JT, Fitzsimmons PN, Hoffman AD, Sadilek M, Grue CE, Nichols JW (2018) Toxicokinetics of the neonicotinoid insecticide imidacloprid in rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys C 205:34–42. https://doi.org/10.1016/j.cbpc.2018.01.002

    Article  CAS  Google Scholar 

  • Furley TH, Brodeur J, Assis HCS, Carriquiriborde P, Chagas KR, Corrales J, Denadai M, Fuchs J, Mascarenhas R, Miglioranza KS, Caramés DMM, Navas JM, Nugegoda D, Planes E, Rodriguez-Jorquera IA, Crozco-Medina M, Boxall ABA, Rudd MA, Brooks BW (2017) Toward sustainable environmental quality: identifying priority research questions for Latin America. Integr Environ Assess Manag. https://doi.org/10.1002/ieam.2023

  • Ge W, Yan S, Wang J, Zhu L, Chen A, Wang J (2015) Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J Agric Food Chem 63(6):1856–1862. https://doi.org/10.1021/jf504895h

    Article  CAS  Google Scholar 

  • Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, van de Zee SEATM, Ritsema CJ (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3:57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2014) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-014-3180-5

  • Gonçalves CR, Marins AT, do Amaral AMB, Leitemperger J, Severo ES, Moraes BS, Zanella R, Loro VL (2018) Biochemical responses in freshwater fish exposed to insecticide propoxur. Bull Environ Contam Toxicol 100(4):524–528. https://doi.org/10.1007/s00128-018-2285-9

    Article  CAS  Google Scholar 

  • Gonçalves C, Marins AT, do Amaral AMB, Nunes MEM, Müller TE, Severo E, Feijó A, Rodrigues CCR, Zanella R, Prestes OD, Clasen B, Loro VL (2020) Ecological impacts of pesticides on Astyanax jacuhiensis (Characiformes:Characidae) from the Uruguay river, Brazil. Ecotoxicol Environ Saf 205:111314. https://doi.org/10.1016/j.ecoenv.2020.111314

    Article  CAS  Google Scholar 

  • Gül A, Benli ÇK, Ayhan A, Memmi BK, Selvi M, Sepici-Dinçel A, Çakirogullari GÇ, Erkoç F (2012) Sublethal propoxur toxicity to juvenile common carp (Cyprinus carpio l., 1758): biochemical, hematological, histopathological, and genotoxicity effects. Environ Toxicol Chem 31(9):2085–2092. https://doi.org/10.1002/etc.1924

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    Article  CAS  Google Scholar 

  • Hanson R, Dodoo DK, Essumang DK, Blay Jr J, Yankson K (2007) The effect of some selected pesticides on the growth and reproduction of fresh water Oreochromis niloticus, Chrysicthys nigrodigitatus and Clarias gariepinus. Bull Environ Contam Toxicol 79(5):544–547. https://doi.org/10.1007/s00128-007-9279-3

    Article  CAS  Google Scholar 

  • HSDB—Hazardous Substances Data Bank (2020) Propoxur: environmental fate/exposure summary. https://pubchem.ncbi.nlm.nih.gov/source/hsdb/603#section=Environmental-Fate-Exposure-Summary&fullscreen=true. Acessed 25 Sep 2020

  • Iturburu FG, Simoniello MF, Medici S, Panzeri AM, Menone ML (2018) Imidacloprid causes DNA damage in fish: clastogenesis as a mechanism of genotoxicity. Bull Environ Contam Toxicol 100:760–764. https://doi.org/10.1007/s00128-018-2338-0

    Article  CAS  Google Scholar 

  • Iturburu FG, Zömisch M, Panzeri AM, Crupkin AC, Contardo-Jara V, Pflugmacher S, Menone ML (2017) Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ Toxicol Chem 9999:1–10. https://doi.org/10.1002/etc.3574

    Article  CAS  Google Scholar 

  • IUCN—International Union for Conservation of Nature (2019) The IUCN red list of threatened species. Version 2019-3. https://www.iucnredlist.org/search/stats?query=rhamdia%20quelen. Accessed 16 Dec 2019

  • Kemmerich M, Rizzetti T, Martins ML, Prestes OD, Adaime MB, Zanella R (2015) Optimization by central composite design os a modified QuEChERS method for extraction of pesticide multiresidue in sweet pepper and analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Anal Methods 8:728–739

    Article  Google Scholar 

  • Loro VL, Murussi C, Menezes C, Leitemperger J, Severo E, Guerra L, Costa M, Perazzo GX, Zanella R (2015) Spatial and temporal biomarkers responses of Astyanax jacuhiensis (Cope, 1894) (Characiformes: Characidae) from the middle rio Uruguai, Brazil. Neotrop Ichthyol 13(3):569–578. https://doi.org/10.1590/1982-0224-20140146

    Article  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

    Article  CAS  Google Scholar 

  • Marins AT, Severo ES, Leitemperger JW, Cerezer C, Müller TE, Costa MD, Weimer GH, Bandeira NMG, Prestes OD, Zanella R, Loro VL (2020) Assessment of river water quality in an agricultural region of Brazil using biomarkers in a native neotropical fish, Astyanax spp. (Characidae). Bull Environ Contam Toxicol 104:575–581. https://doi.org/10.1007/s00128-020-02821-0

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    Article  CAS  Google Scholar 

  • Moza PN, Hustert K, Feicht E, Kettrup A (1998) Photolysis of imidacloprid in aqueous solution. Chemosphere 36(3):497–502

    Article  CAS  Google Scholar 

  • Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem. https://doi.org/10.1016/0003-2697(72)90451-4

  • Nunes MEM, Müller TE, Braga MM, Fontana BD, Quadros VA, Marins A, Rodrigues C, Menezes C, Rosemberg DB, Loro VL (2016) Chronic treatment with paraquat induces brain injury, changes in antioxidant defenses system, and modulates behavioral functions in zebrafish. Mol Neurobiol 54(6):3925–3934. https://doi.org/10.1007/s12035-016-9919-x

    Article  CAS  Google Scholar 

  • Oliveira FA, Reis LPG, Soto-Blanco B, Melo MM (2015) Pesticides residues in the Prochilodus costatus (Valenciennes, 1850) fish caught in the São Francisco River, Brazil. J Environ Sci Health B 50(6):398–405. https://doi.org/10.1080/03601234.2015.1011946

    Article  CAS  Google Scholar 

  • Pandey MR, Guo H (2014) Evaluation of cytotoxicity, genotoxicity and embryotoxicity of insecticide propoxur using flounder gill (FG) cells and zebrafish embryos. Toxicol In Vitro 28:340–353. https://doi.org/10.1016/j.tiv.2013.11.010

    Article  CAS  Google Scholar 

  • Phugare SS, Kalyani DC, Gaikwad YB, Jadhav JP (2013) Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem Eng J 230:27–35

    Article  CAS  Google Scholar 

  • Rizzetti T, Kemmerich M, Martins ML, Prestes OD, Adaime MB, Zanella R (2016) Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in the orange juice by UHPLC-MS/MS. Food Chem 196:25–33

    Article  CAS  Google Scholar 

  • Severo ES, Marins AT, Cerezer C, Costa D, Nunes M, Prestes OD, Zanella R, Loro VL (2020) Ecological risk of pesticide contamination in a Brazilian river located near a rural area: a study of biomarkers using zebrafish embryos. Ecotoxicol Environ Saf 190:110071. https://doi.org/10.1016/j.ecoenv.2019.110071

    Article  CAS  Google Scholar 

  • Sposito JCV, Montagner CC, Casado M, Navarro-Martín L, Solórzano JCJ, Piña B, Grisolia AB (2018) Emerging contaminants in Brazilian rivers: occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere 209:696–704. https://doi.org/10.1016/j.chemosphere.2018.06.046

    Article  CAS  Google Scholar 

  • Spurgeon DJ, Jones OAH, Dorne JCM, Svendsen C, Swain S, Stürzenbaum SR (2010) Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ 408:3725–3734. https://doi.org/10.1016/j.scitotenv.2010.02.038

    Article  CAS  Google Scholar 

  • Topal A, Alak G, Ozkaraca M, Yeltekin AC, Comakli S, Acil G, Kokturk M, Atamanalp M (2017) Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere 175:186–191. https://doi.org/10.1016/j.chemosphere.2017.02.047

    Article  CAS  Google Scholar 

  • Torres CA, Capuli EE (2019) Rhamdia quelen (Quoy & Gaimard, 1824). http://www.fishbase.org/summary/Rhamdia-quelen.html. Accessed 16 Dec 2019

  • USEPA—United States Environmental Protection Agency (1997) Reregistration eligibility decision, propoxur list B, Case 2555. https://archive.epa.gov/pesticides/reregistration/web/pdf/2555red.pdf. Accessed 16 Dec 2019

  • Vieira CED, Pérez MR, Acayaba RD, Raimundo CCM, Martinez CBR (2018) DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195:125–134. https://doi.org/10.1016/j.chemosphere.2017.12.077

    Article  CAS  Google Scholar 

  • WHO—World Health Organisation (2003) FAO/WHO evaluation report 80/2003. In: WHO specifications and evaluations for public health pesticides: propoxur, 2-isopropoxyphenyl methylcarbamate. https://www.who.int/whopes/quality/Propoxur_eval_specs_WHO_August_2017.pdf?ua=1. Accessed 16 Dec 2019

  • Yan LJ, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human Low-density lipoproteins. Anal Biochem 228:349–351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. VLL received a research fellowship from CNPq (National Research Council), Process number: 309314/2017-8. ATM received a doctoral fellowship from CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vania Lucia Loro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marins, A.T., Cerezer, C., Leitemperger, J.W. et al. A mixture of pesticides at environmental concentrations induces oxidative stress and cholinergic effects in the neotropical fish Rhamdia quelen. Ecotoxicology 30, 164–174 (2021). https://doi.org/10.1007/s10646-020-02300-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02300-6

Keywords

Navigation