Skip to main content
Log in

Genotoxicity in fishes environmentally exposed to As, Se, Hg, Pb, Cr and toxaphene in the lower Colorado River basin, at Mexicali valley, Baja California, México

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The environmental exposure to As, Se, Hg, Pb, Cr and toxaphene was assessed for 11 freshwater fish species in irrigation channels, agricultural return flow drains, a drain collecting lagoon and sections of the Colorado River at the Mexicali valley in Baja California, México, during August 2015–April 2016. Arsenic (2.90 ng ml−1) and Se (1.41 ng ml−1) in water had the highest concentrations in the return flow drains (Hardy River and Xochimilco Lagoon, respectively). However, fish axial muscle tissue had the highest concentration of Se (8.3 µg g−1) and Hg (0.36 µg g−1) in Colorado River fresh water, while As (1.7 µg g−1) in Hardy River fish was highest. Selenium concentrations in all fishes and toxaphene in Cyprinus carpio and Ameiurus natalis are above the safe levels for human consumption (0.3 µg g−1 and 180 ng g−1 respectively). Toxaphene was detected in the fish axial tissue, having the highest concentrations in Poecilia latipinna (690 ng g−1) in the Colorado River. The low proportion of the 8-Cl toxaphene congeners in fish suggests degradation of this pollutant. Tilapia. sp. cf. zillii had the most genotoxic damage with 7.4 micronucleated erythrocytes per 10,000 erythrocytes in Xochimilco Lagoon and 2 in Hardy River. The genotoxicity in all the fish species studied was significantly correlated to the concentrations of As and Se in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed K, Habibullah-Al-Mamun AH, Mohammad A, Parvin E, Akter MS, Khan MS, Islam M (2011) Assessing the genotoxic potentials of arsenic in tilapia (Oreochromis mossambicus) using alkaline comet assay and micronucleus test. Chemosphere 84:143–149. https://doi.org/10.1016/j.chemosphere.2011.02.025

    Article  CAS  Google Scholar 

  • Al-Sabti K (1986) Clastogenic effects of five carcinogenicmutagenic chemicals on the cells of the common carp (Cyprinus carpio L). Comp Biochem Physiol 85C:5–9. https://doi.org/10.1016/0742-8413(86)90043-5

    Article  CAS  Google Scholar 

  • AI-Sabti K (1994) Micronuclei induced by selenium, mercury, methylmercury and their mixtures in binucleated blocked fish erythrocyte cells. Mutat Res 320:157–163. https://doi.org/10.1016/0165-1218(94)90068-x

    Article  Google Scholar 

  • Anscombe FJ (1948) The transformation of Poisson, binomial, and negative binomial data. Biometrika 35:246–254

    Article  Google Scholar 

  • Arellano-García ME (2010) Genotoxicidad por exposición a mezclas de contaminantes en residentes próximos al río Hardy-Colorado, Baja California. Ph.D. thesis, Universidad Autónoma de Baja California, p 179

  • Arcaro KF, Yang Y, Vakharia DD (2000) Toxaphene is antiestrogenic in a human breast-cancer cell assay. J Toxicol Environ Health A 59:197–210. https://doi.org/10.1080/009841000156970

    Article  CAS  Google Scholar 

  • Ayllon F, Garcia-Vazquez E (2000) Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test. Mutat Res 467:177–186. https://doi.org/10.1016/S1383-5718(00)00033-4

    Article  CAS  Google Scholar 

  • Braham RP, Blazer VS, Shaw CH, Mazik PM (2017) Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin USA. Environ Mol Mutagen 58:570–581. https://doi.org/10.1002/em.22123

    Article  CAS  Google Scholar 

  • Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metals in marine fish meat and human health: a review. J Sci Food Agric 96:32–48. https://doi.org/10.1002/jsfa.7360

    Article  CAS  Google Scholar 

  • Carpenter DO (2013) Effects of persistent and bioactive organic pollutants on human health. John Wiley & Sons, Inc Hoboken, New Jersey, p 608. https://doi.org/10.1002/9781118679654.index

  • Cavas T (2008) In vivo genotoxicity of mercury chloride and lead acetate: Micronucleus test on acridine orange stained fish cells. Food Chem Toxicol 46:352–358. https://doi.org/10.1016/j.fct.2007.08.015

    Article  CAS  Google Scholar 

  • Daesslé LW, Lugo-Ibarra KC, Tobschall HJ, Melo M, Gutiérrez-Galindo EA, García-Hernández J, Álvarez LG (2009) Accumulation of As, Pb, and Cu associated with the recent sedimentary processes in the Colorado Delta, South of the United States-México Boundary. Arch Environ Contam Toxicol 56:680–692. https://doi.org/10.1007/s00244-008-9218-2

    Article  CAS  Google Scholar 

  • DOF (2011) Norma Oficial Mexicana NOM-242-SSA1-2009, productos de la pesca frescos, refrigerados, congelados y procesados. Diarío Oficial de la Federación. http://dof.gob.mx/nota_detalle.php?codigo=5177531&fecha=10/02/2011

  • Ekici P, Friess A, Parlar H (2008) Permissible level of toxaphene residues in fish from the German market based on in vivo and in vitro effects to tumor promotion. Food Chem Toxicol 46:2320–2325. https://doi.org/10.1016/j.fct.2008.03.011

    Article  CAS  Google Scholar 

  • Ergene S, Cavas T, Celik A, Köleli N, Kaya F, Karahan A (2007) Monitoring of nuclear abnormalities in peripheral erythrocytes of three fish species from the Göksu Delta (Turkey): genotoxic damage in relation to water pollution. Ecotoxicol 16:385–391. http://dof.gob.mx/10.1007/s10646-007-0142-4

  • Flores-Galván M, Arellano-García E, Ruiz-Campos G, Daesslé LW (2017) Genotoxic assessment of some inorganic compounds in desert pupfish (Cyprinodon macularius) in the evaporation pond from a geothermal plant. Bull Environ Contam Toxicol 99:218–223. http://dof.gob.mx/10.1007/s00128-017-2114-6

  • García-Hernández J (2004) Water quality in the Colorado River Delta. Southwest Hydrol 3:18–19

    Google Scholar 

  • García-Hernández J, Sapozhnikova YV, Schlenk D, Mason AZ, Hinojosa-Huerta O, Rivera-Díaz JJ, Ramos-Delgado NA, Sánchez-Bon G (2006) Concentration of contaminants in breeding birds eggs from the Colorado River Delta. Environ Toxicol Chem 25(6):1640–1647. https://doi.org/10.1897/05-185R.1

    Article  Google Scholar 

  • García-Hernández J, Glenn EP, Flessa K (2013) Identification of chemicals of potential concern (COPECs) in anthropogenic wet lands of the Colorado River delta. Ecol Eng 59:52–60. https://doi.org/10.1016/j.ecoleng.2013.04.045

    Article  Google Scholar 

  • Gutiérrez-Galindo EA, Flores-Muñoz G, Aguilar-Flores A (1988a) Mercury in fresh-water fish and clams from the Cerro Prieto geotermal field of Baja California, México. Bull Environ Contam Toxicol 41:201–207. https://doi.org/10.1007/BF01705431

    Article  Google Scholar 

  • Gutiérrez-Galindo EA, Flores-Muñoz G, Celaya-Villaescusa J (1988b) Chlorinated hydrocarbons in molluscs of the Mexicali Valley and upper Gulf of California. Cienc Mar 14:91–113. https://doi.org/10.7773/cm.v14i3.599

    Article  Google Scholar 

  • Gutiérrez-Galindo EA, Flores-Muñoz G, Villa-Andrade M, Villaescusa-Celaya JA (1998) Organochlorine insecticides in fishes from the Mexicali Valley, Baja California, México. Cienc Mar 14:1–22. https://doi.org/10.7773/cm.v14i4.618

    Article  Google Scholar 

  • Hinck JE, Blazer VS, Denslow ND, Echols KR, Gross TS, May TW, Anderson PJ, Coyle JJ, Tillitt DE (2007) Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries. Sci Tot Environ 378:376–402. https://doi.org/10.1016/j.scitotenv.2007.02.032

    Article  CAS  Google Scholar 

  • Jantunen L, Bidleman T (1998) Organochlorine pesticides and enantiomers of chiral pesticides in Arctic Ocean water. Arch Environ Contam Toxicol 35:218. https://doi.org/10.1007/s002449900370

    Article  CAS  Google Scholar 

  • Korytár P, Van Stee PLL, Leonards PE, De Boer J, Brinkman UA (2003) Attempt to unravel the composition of toxaphene by comprehensive two-dimensional gas chromatography with selective detection. J Chromatogr A 994:179–189. https://doi.org/10.1016/S0021-9673(03)00438-2

    Article  CAS  Google Scholar 

  • Kucuksezgin FA, Kontas O, Altay E, Uluturhan DE (2006) Assessment of marine pollution in Izmir Bay; Nutrient heavy metal and total hydrocarbon concentrations. Environ Int 32:41–51. https://doi.org/10.1016/j.envint.2005.04.007

    Article  CAS  Google Scholar 

  • Leonards EGP, Besselink H, Klungsøyr J, McHugh B, Nixon E, Rimkus GG, Brouwer A, De Boer J (2011) Toxicological risks to humans of toxaphene residues in fish. Integr Environ Assess Manag 8:523–529. https://doi.org/10.1002/ieam.1275

    Article  CAS  Google Scholar 

  • Lugo-Ibarra KC, Daesslé LW, Macías-Zamora JV, Ramírez-Álvarez N (2011) Persistent organic pollutants associated to water fluxes and sedimentary processes in the Colorado River delta, Baja California, México. Chemosphere 85:210–217. https://doi.org/10.1016/j.chemosphere.2011.06.030

    Article  CAS  Google Scholar 

  • Medina-Garza H (2012). Uso de biomarcadores en peces como herramienta para evaluarla exposición y efecto de contaminantes en cuerpos de agua. Master’s thesis. Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Ingeniería y Medicina, Programas Multidisciplinarios en Ciencias Ambientales, p 78

  • Mora MA, Anderson DW (1995) Selenium, boron, and heavy metals in birds from the Mexicali valley, Baja California, México. Bull Environ Contam Toxicol 54:198–206. https://doi.org/10.1007/BF00197431

    Article  CAS  Google Scholar 

  • Nolan BT, Clark ML (1997) Selenium in irrigated agricultural areas of the western United States. J Environ Qual 26:849–857. https://doi.org/10.2134/jeq1997.00472425002600030035x

    Article  CAS  Google Scholar 

  • Obiakor MO, Okonkwo JC, Nnabude PC, Ezeonyejiaku CD (2012) Ecogenotoxicology: micronucleus assay in fish erythrocytes as in situ aquatic pollution biomarker: a review. J Anim Sci Adv 2(1):123–133

    Google Scholar 

  • Oost R, Beyer R, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Romero S, García J, Valdez B, Vega M (2010) Calidad del Agua para Actividades Recreativas del Río Hardy en la Región Fronteriza México-Estados Unidos. Inf Tecnol 21:69–78. https://doi.org/10.4067/S0718-07642010000500010

    Article  CAS  Google Scholar 

  • Ruiz-Campos G, Camarena-Rosales F, González-Acosta AF, Maeda-Martínez AM, García de León FJ, Varela-Romero A, Andreu-Soler A (2014) Estatus actual de conservación de seis especies de peces dulceacuícolas de la Península de Baja California, México. Rev Mex Biodivers 85:1235–1248. https://doi.org/10.7550/rmb.43747

    Article  Google Scholar 

  • Sánchez-Osorio JL (2014) Plaguicidas organoclorados en suelos rurales, sedimentos y aire de zonas agrícolas del noroeste de México: fuentes y enantioselectividad. PhD thesis, Universidad Autónoma de Baja California, México, p 118

  • Schmid W (1975) The micronucleus test. Mutat Res 31:9–15. https://doi.org/10.1016/0165-1161(75)90058-8

    Article  CAS  Google Scholar 

  • Schrader T, Boyes B, Matula T, Héroux-Metcalf C, Langlois I, Downie R (1998) In vitro investigation of toxaphene genotoxicity in S. typhimurium and Chinese hamster V79 lung fibroblasts. Mutat Res. 413(2):159–168. https://doi.org/10.1016/S1383-5718(98)00027-8

    Article  CAS  Google Scholar 

  • Stapleton HM, Masterson C, Skubinna J, Ostrom P, Ostrom E, Baker JE (2001) Accumulation of Atmospheric and Sedimentary PCBs and Toxaphene in a Lake Michigan Food Web. Environ Sci Technol 35:3287–3293. https://doi.org/10.1021/es0019225

    Article  CAS  Google Scholar 

  • Steinel H, Arlauskas A, Baker RS (1990) SCE induction and cell-cycle delay by toxaphene. Mutat Res. 230(1):29–33. https://doi.org/10.1016/0027-5107(90)90038-6

    Article  CAS  Google Scholar 

  • South African Department of Health (DOH) (2004) Foodstuffs, cosmetics and disinfectants act, 1972 (Act no. 54 of 1972) Gov Gaz 500:4–6

  • Swackhamer DL, Pearson RF, Schottler S (1998) Air-water exchange of toxaphene in the Great Lakes. Chemosphere 37(9-12):2545–2561. https://doi.org/10.1016/S0045-6535(98)00307-5

    Article  CAS  Google Scholar 

  • Torres-Bugarín O, Zavala-Aguirre JL, Gómez-Rubio P, Buelna-Osbe HR, Zúñiga-González G, García-Ulloa Gómez M (2007) Especies de peces con potencial como bioindicadoras de genotoxicidad en el lago “La Alberca”, Michoacán, México. Hidrobiológica 17:75–81

    Google Scholar 

  • USEPA (1999) Toxaphene update: impact on fish advisories, United States Environmental Protection Agency, Office of Water (4305), (EPA-823-F-99-018) Washington, D.C.

  • USEPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories, vol 1: fish sampling and analysis, United States Environmental Protection Agency, Office of Science and Technology-Office of Water, (EPA-823-B-00-007) Washington, D.C.

  • Vetter W, Oehme M (2000) Toxaphene. Analysis and environmental fate of congeners. In: Paasivirta J (ed) New types of persistent halogenated compounds. The handbook of environmental chemistry/anthropogenic compounds. Springer-Verlag, Berlin, Heidelberg, p 237–287

    Google Scholar 

  • Walters DM, Rosi‐Marshall E, Kennedy TA, Cross WF, Baxter CV (2015) Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA. Environ Toxicol Chem 34:2385–2394. https://doi.org/10.1002/etc.30777

    Article  CAS  Google Scholar 

  • Zeng EY, Cherrie LV (1997) Organic pollutants in the coastal environment off San Diego, California. 1. Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 16:179–188. https://doi.org/10.1002/etc.5620160212

    Article  CAS  Google Scholar 

  • Zúñiga G, Torres-Bugarín O, Ramírez-Muñoz MP, Ramos A, Fanti-Rodríguez E, Portilla E, García-Martínez D, Cantú JM, Gallegos-Arreola MP, Sánchez-Corona J (1996) Spontaneous micronuclei in peripheral blood erythrocytes from 35 mammalian species. Mutat Res 369:123–127. https://doi.org/10.1016/S0165-1218(96)90056-7

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Mexican Directorate for Wildlife (Dirección General de Vida Silvestre) for fish sampling permit SGPA/DGVS 09605/12 to GRC. The Mexican Council for Science and Technology CONACYT for granting a Ph.D. scholarship to MFG (368374).). Exotic Species Network of México (UANL-UABC-UMar) provided economic funds for this study. To K. Juárez (UNAM) for fluorescence microscopy training, L. Lares (CICESE) for allowing access to freeze-dry the fish tissue samples, T. Kretzschmar and E. Iñiguez (CeMIE-Geo/CICESE) for part of the water analyses, the group of the organic pollutants laboratory (IIO-UABC) for their support in extraction, analysis and interpretation of toxaphene. LWD acknowledges support by the Alexander von Humboldt Foundation while contributing to this paper at FAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ruiz-Campos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Fish sampling was approved by Mexican Directorate for Wildlife (permit: SGPA/DGVS 09605/12).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Galván, M.A., Daesslé, L.W., Arellano-García, E. et al. Genotoxicity in fishes environmentally exposed to As, Se, Hg, Pb, Cr and toxaphene in the lower Colorado River basin, at Mexicali valley, Baja California, México. Ecotoxicology 29, 493–502 (2020). https://doi.org/10.1007/s10646-020-02200-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02200-9

Keywords

Navigation