Skip to main content

Advertisement

Log in

Assessing the environmental hazard of individual and combined pharmaceuticals: acute and chronic toxicity of fluoxetine and propranolol in the crustacean Daphnia magna

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Pharmaceuticals are widespread emerging contaminants and, like all pollutants, are present in combination with others in the ecosystems. The aim of the present work was to evaluate the toxic response of the crustacean Daphnia magna exposed to individual and combined pharmaceuticals. Fluoxetine, a selective serotonin re-uptake inhibitor widely prescribed as antidepressant, and propranolol, a non-selective β-adrenergic receptor-blocking agent used to treat hypertension, were tested. Several experimental trials of an acute immobilization test and a chronic reproduction test were performed. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design. Five concentrations and 5 percentages of each substance in the mixture (0, 25, 50, 75, and 100%) were tested. The MIXTOX model was applied to analyze the experimental results. This tool is a stepwise statistical procedure that evaluates if and how observed data deviate from a reference model, either concentration addition (CA) or independent action (IA), and provides significance testing for synergism, antagonism, or more complex interactions. Acute EC50 values ranged from 6.4 to 7.8 mg/L for propranolol and from 6.4 to 9.1 mg/L for fluoxetine. Chronic EC50 values ranged from 0.59 to 1.00 mg/L for propranolol and from 0.23 to 0.24 mg/L for fluoxetine. Results showed a significant antagonism between chemicals in both the acute and the chronic mixture tests when CA was adopted as the reference model, while absence of interactive effects when IA was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander BS, Wood MD (1987) Stereoselective blockade of central [3H]5-hydroxytryptamine binding to multiple sites (5-HT1A,5-HT1B, and 5-HT1C) by mianserin and propranolol. J Pharm Pharmacol 39:664–666. doi:10.1111/j.2042-7158.1987.tb03452.x

    Article  CAS  Google Scholar 

  • Altenburger R, Nendza M, Schuurmann G (2003) Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem 22:1900–1915. doi:10.1897/01-386

    Article  CAS  Google Scholar 

  • De Andrés F, Castañeda G, Ríos Á (2009) Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances. Chirality 21:751–759. doi:10.1002/chir.20675

    Article  Google Scholar 

  • Barata C, Baird DJ, Nogueira AJ, Soares AMVM, Riva MC (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol 78:1–14. doi:10.1016/j.aquatox.2006.01.013

    Article  CAS  Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123. doi:10.1016/j.chemosphere.2013.07.057

    Article  CAS  Google Scholar 

  • Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615. doi:10.1111/j.1744-7348.1939.tb06990.x

    Article  CAS  Google Scholar 

  • Bringolf RB, Heltsley RM, Newton TJ, Eads CB, Fraley SJ, Shea D, Cope WG (2010) Environmental occurrence and reproductive effects of the pharmaceutical fluoxetine in native freshwater mussels. Environ Toxicol Chem 29:1311–1318. doi:10.1002/etc.157

    CAS  Google Scholar 

  • Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003a) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183. doi:10.1016/S0378-4274(03)00066-3

    Article  CAS  Google Scholar 

  • Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, Slattery M, La Point TW, Huggett DB (2003b) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52:135–142. doi:10.1016/S0045-6535(03)00103-6

    Article  CAS  Google Scholar 

  • Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environ Sci Technol 37:1241–1248. doi:10.1021/es020158e

    Article  CAS  Google Scholar 

  • Campos B, Garcia-Reyero N, Rivetti C, Escalon L, Habib T, Tauler R, Tsakovski S, Piña B, Barata C (2013) Identification of metabolic pathways in Daphnia magna explaining hormetic effects of selective serotonin reuptake inhibitors and 4-nonylphenol using transcriptomic and phenotypic responses. Environ Sci Technol 47:9434–9443. doi:10.1021/es4012299

    Article  CAS  Google Scholar 

  • Campos B, Piña B, Barata C (2012a) Mechanisms of action of selective serotonin reuptake inhibitors in Daphnia magna. Environ Sci Technol 46:2943–2950. doi:10.1021/es203157f

    Article  CAS  Google Scholar 

  • Campos B, Piña B, Fernández-Sanjuán M, Lacorte S, Barata C (2012b) Enhanced offspring production in Daphnia magna clones exposed to serotonin reuptake inhibitors and 4-nonylphenol. Stage- and food-dependent effects. Aquat Toxicol 109:100–110. doi:10.1016/j.aquatox.2011.12.003

    Article  CAS  Google Scholar 

  • Campos B, Rivetti C, Kress T, Barata C, Dircksen H (2016) Depressing antidepressant: fluoxetine affects serotonin neurons causing adverse reproductive responses in Daphnia magna. Environ Sci Technol 50:6000–6007. doi:10.1021/acs.est.6b00826

    Article  CAS  Google Scholar 

  • Carpenter DO, Arcaro K, Spink DC (2002) Understanding the human health effects of chemical mixtures. Environ Health Perspect 110(suppl 1):25–42

    Article  CAS  Google Scholar 

  • Christensen AM, Faaborg-Andersen S, Ingerslev F, Baun A (2007) Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. Environ Toxicol Chem 26:85–91. doi:10.1897/06-219R.1

    Article  CAS  Google Scholar 

  • Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25(2006):2208–2215. doi:10.1897/05-415R.1

    Article  CAS  Google Scholar 

  • Daughton CG, Brooks BW (2011). Active pharmaceuticals ingredients and aquatic organisms. In: Beyer WN, Meador J (eds) Environmental contaminants in biota: interpreting tissue concentrations, 2nd edn. Taylor and Francis, Boca Raton, FL, pp 287–347

  • Dickenson ERV, Snyder SA, Sedlak DL, Drewes JE (2011) Indicator compounds for assessment of wastewater effluent contributions to flow and water quality. Water Res 45:1199–1212. doi:10.1016/j.watres.2010.11.012

    Article  CAS  Google Scholar 

  • Dietrich S, Ploessl F, Bracher F, Laforsch C (2010) Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna—a multigenerational study. Chemosphere 79:60–66. doi:10.1016/j.chemosphere.2009.12.069

    Article  CAS  Google Scholar 

  • Dzialowski EM, Turner PK, Brooks BW (2006) Physiological and reproductive effects of beta adrenergic receptor antagonists in Daphnia magna. Arch Environ Contam Toxicol 50:503–510. doi:10.1007/s00244-005-0121-9

    Article  CAS  Google Scholar 

  • Fabbri E, Franzellitti S (2016) Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. Environ Toxicol Chem 35:799–812. doi:10.1002/etc.3131

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi:10.1016/j.aquatox.2005.09.009

    Article  CAS  Google Scholar 

  • Ferreira ALG, Loureiro S, Soares AMVM (2008) Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aquat Toxicol 89:28–39. doi:10.1016/j.aquatox.2008.05.012

    Article  CAS  Google Scholar 

  • Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth and reproduction. Chemosphere 61:200–207. doi:10.1016/j.chemosphere.2005.02.016

    Article  CAS  Google Scholar 

  • Fong PP, Ford AT (2014) The biological effects of antidepressants on the molluscs and crustaceans: a review. Aquat Toxicol 151:4–13. doi:10.1016/j.aquatox.2013.12.003

    Article  CAS  Google Scholar 

  • Fong PP, Philbert CM, Roberts BJ (2003) Putative serotonin reuptake inhibitor-induced spawning and parturition in freshwater bivalves is inhibited by mammalian 5-HT2 receptor antagonists. J Exp Zool A Ecol Genet Physiol 298:67–72. doi:10.1002/jez.a.10279

    Google Scholar 

  • Franzellitti S, Buratti S, Capolupo M, Du B, Haddad SP, Chambliss CK, Brooks BW, Fabbri E (2014) An exploratory investigation of various modes of action and potential adverse outcomes of fluoxetine in marine mussels. Aquat Toxicol 151:14–26. doi:10.1016/j.aquatox.2013.11.016

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Du B, Haddad SP, Chambliss CK, Brooks BW, Fabbri E (2015) A multibiomarker approach to explore interactive effects of propranolol and fluoxetine in marine mussels. Environ Pollut 205:60–69. doi:10.1016/j.envpol.2015.05.020

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Valbonesi P, Capuzzo A, Fabbri E (2011) The β-blocker propranolol affects cAMP-dependent signaling and induces the stress response in Mediterranean mussels, Mytilus galloprovincialis. Aquat Toxicol 101:299–308. doi:10.1016/j.aquatox.2010.11.001

    Article  CAS  Google Scholar 

  • Glassmeyer ST, Kolpin DW, Furlong ET, Focazio MJ (2008) Environmental presence and persistence of pharmaceuticals: an overview. In: Aga DS (ed) Fate of Pharmaceuticals in the Environment and in Water Treatment Systems. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Godoy AA, Kummrow F, Pamplin PAZ (2015a) Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment - A review. Chemosphere 138:281–291. doi:10.1016/j.chemosphere.2015.06.024

    Article  CAS  Google Scholar 

  • Godoy AA, Kummrow F, Pamplin PAZ (2015b) Ecotoxicological evaluation of propranolol hydrochloride and losartan potassium to Lemna minor L. (1753) individually and in binary mixtures. Ecotoxicology 24:1112–1123. doi:10.1007/s10646-015-1455-3

    Article  CAS  Google Scholar 

  • Hansen LK, Frost PC, Larson JH, Metcalfe CD (2008) Poor elemental food quality reduces the toxicity of fluoxetine on Daphnia magna. Aquat Toxicol 86:99–103. doi:10.1016/j.aquatox.2007.10.005

    Article  CAS  Google Scholar 

  • ISO (International Organization for Standardization) (2000) Water quality—Determination of long term toxicity of substances to Daphnia magna Straus (Cladocera, Crustacea), 1st edn. International Organization for Standardization, Geneve, Switzerland, Ref. ISO 10706:2000(E)

    Google Scholar 

  • ISO (International Organization for Standardization) (2012) Water quality—Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute toxicity test, 4th ed. International Organization for Standardization, Geneve, Switzerland, Ref. ISO 6341:2012(E)

    Google Scholar 

  • Jeong TY, Kim HY, Kim SD (2015) Multi-generational effects of propranolol on Daphnia magna at different environmental concentrations. Environ Pollut 206:188–194. doi:10.1016/j.envpol.2015.07.003

    Article  CAS  Google Scholar 

  • Jeong TY, Kim HY, Kim SD (2016) Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna. Environ Pollut 216:811–818. doi:10.1016/j.envpol.2016.06.051

    Article  Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ Toxicol Chem 24:2701–2713. doi:10.1897/04-431R.1

    Article  CAS  Google Scholar 

  • Kwon JW, Armbrust KL (2006) Laboratory persistence and fate of fluoxetine in aquatic environments. Environ Toxicol Chem 25:2561–2568. doi:10.1897/05-613R.1

    Article  CAS  Google Scholar 

  • Lee MD, Ayanoglu E, Gong L (2006) Drug-induced changes in P450 enzyme expression at the gene expression level: A new dimension to the analysis of drug–drug interactions. Xenobiotica 36:1013–1080. doi:10.1080/00498250600861785

    Article  CAS  Google Scholar 

  • Loewe S, Muischnek H (1926) Über kombinationswirkungen. I. Mitteilung: Hilfsmittel der Fragestellung. Naunyn-Schmiedebergs. Arch Exp Pathol Pharmakol 114:313–326. doi:10.1007/bf01952257

    Article  CAS  Google Scholar 

  • Luna TO, Plautz SC, Salice CJ (2015) Chronic effects of 17α-ethinylestradiol, fluoxetine, and the mixture on individual and population-level end points in Daphnia magna. Arch Environ Contam Toxicol 68:603–611. doi:10.1007/s00244-014-0119-2

    Article  CAS  Google Scholar 

  • Maszkowska J, Stolte S, Kumirska J, Lukaszewicz P, Mioduszewska K, Puckowski A, Caban M, Wagil M, Stepnowski P, Bialk-Bielinńska A (2014) Beta-blockers in the environment: Part II. Ecotoxicity study. Sci Total Environ 493:1122–1126. doi:10.1016/j.scitotenv.2014.06.039

    Article  CAS  Google Scholar 

  • McCoole MD, Atkinson NJ, Graham DI, Grasser EB, Joselow AL, McCall NM, Welker AM, Wilsterman Jr EJ, Baer KN, Tilden AR, Christie AE (2012) Genomic analyses of aminergic signaling systems (dopamine, octopamine and serotonin) in Daphnia pulex. Comp Biochem Physiol D Genomics Proteomics 7:35–58. doi:10.1016/j.cbd.2011.10.005

    Article  CAS  Google Scholar 

  • Meadows SL, Gennings C, Carter Jr WH, Bae DS (2002) Experimental designs for mixtures of chemicals along fixed ratio rays. Environ Health Perspect 110(supp 6):979–983

    Article  CAS  Google Scholar 

  • Metcalfe CD, Chu S, Judt C, Li H, Oakes KD, Servos MR, Andrews DM (2010) Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ Toxicol Chem 29:79–89. doi:10.1002/etc.27

    Article  CAS  Google Scholar 

  • Minguez L, Farcy E, Ballandonne C, Lepailleur A, Serpentini A, Lebel JM, Bureau R, Halm-Lemeille MP (2014a) Acute toxicity of 8 antidepressants: what are their modes of action? Chemosphere 108:314–319. doi:10.1016/j.chemosphere.2014.01.057

    Article  CAS  Google Scholar 

  • Minguez L, Di Poi C, Farcy E, Ballandonne C, Benchouala A, Bojic C, Cossu-Leguille C, Costil K, Serpentini A, Lebel JM, Halm-Lemeille MP (2014b) Comparison of the sensitivity of seven marine and freshwater bioassays as regards antidepressant toxicity assessment. Ecotoxicology 23:1744–1754. doi:10.1007/s10646-014-1339-y

    Article  CAS  Google Scholar 

  • Nation JL (2002) Insect physiology and biochemistry. CRC Press, Boca Raton, FL

    Google Scholar 

  • Oliveira LLD, Antunes SC, Gonçalves F, Rocha O, Nunes B (2015) Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol Environ Saf 119:123–131. doi:10.1016/j.ecoenv.2015.04.028

    Article  CAS  Google Scholar 

  • Olmstead AW, LeBlanc GA (2005) Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model. Integr Environ Assess Manag 1:114–122. doi:10.1897/IEAM_2004-005R.1

    Article  CAS  Google Scholar 

  • Pery ARR, Gust M, Mons R, Ramil M, Fink G, Ternes T, Garric J (2008) Fluoxetine effects assessment on the life cycle of aquatic invertebrates. Chemosphere 73:300–304. doi:10.1016/j.chemosphere.2008.06.029

    Article  CAS  Google Scholar 

  • Ribeiro AR, Afonso CM, Castro PML, Tiritan ME (2013) Enantioselective biodegradation of pharmaceuticals, alprenolol and propranolol, by an activated sludge inoculum. Ecotoxicol Environ Saf 87:108–114. doi:10.1016/j.ecoenv.2012.10.009

    Article  CAS  Google Scholar 

  • Rivetti C, Campos B, Barata C (2016) Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. Aquat Toxicol 10:289–296. doi:10.1016/j.aquatox.2015.07.019

    Article  Google Scholar 

  • Rudd MA, Ankley GT, Boxall ABA, Brooks BW (2014) International scientists’ research priorities for pharmaceuticals and personal care products in the environment. Integr Environ Assess Manag 10:576–587. doi:10.1002/ieam.1551

    Article  Google Scholar 

  • Santos LH, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MC (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95. doi:j.jhazmat.2009.10.100

    Article  CAS  Google Scholar 

  • Stanley JK, Ramirez AJ, Chambliss CK, Brooks BW (2007) Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate. Chemosphere 69:9–16. doi:10.1016/j.chemosphere.2007.04.080

    Article  CAS  Google Scholar 

  • Stanley JK, Ramirez AJ, Mottaleb M, Chambliss CK, Brooks BW (2006) Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas. Environ Toxicol Chem 25:1780–1786. doi:10.1897/05-298R1.1

    Article  CAS  Google Scholar 

  • Taylor NS, Weber RJM, White TA, Viant MR (2010) Discriminating between different acute chemical toxicities via changes in the daphnid metabolome. Toxicol Sci 118:307–317. doi:10.1093/toxsci/kfq247

    Article  CAS  Google Scholar 

  • Tierney AJ (2001) Structure and function of invertebrate 5-HT receptors: a review. Comp Biochem Physiol A Mol Integr Physiol 128:791–804. doi:10.1016/S1095-6433(00)00320-2

    Article  CAS  Google Scholar 

  • Viganò L (1991) Suitability of commercially available spring waters as standard medium for culturing Daphnia magna. Bull Environ Contam Toxicol 47:775–782. doi:10.1007/BF01701149

    Article  Google Scholar 

  • Weir MR (2009) β-blockers in the treatment of hypertension: are there clinically relevant differences? Postgrad Med 121:90–98. doi:10.3810/pgm.2009.05.2007

    Article  Google Scholar 

  • Yu Y, Wu L, Change A (2013) Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. Sci Total Environ 442:310–316. doi:10.1016/j.scitotenv.2012.10.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Valentina Stignani for her assistance in the laboratory.

Funding

The Italian Ministry of Education, University and Research provided financial support for the conduct of the research and granted a Ph.D. fellowship to the first author, who carried out the study in partial fulfillment of the requirements for the doctorate in Environmental Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pasteris.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This study did not involve any research conducted on human participants. No specific permissions were necessary, because the existing legislation on the welfare of experimental animals is not applicable and the study did not involve the collection of endangered or protected species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varano, V., Fabbri, E. & Pasteris, A. Assessing the environmental hazard of individual and combined pharmaceuticals: acute and chronic toxicity of fluoxetine and propranolol in the crustacean Daphnia magna . Ecotoxicology 26, 711–728 (2017). https://doi.org/10.1007/s10646-017-1803-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-017-1803-6

Keywords

Navigation