Skip to main content
Log in

Evidence of maternal copper and cadmium transfer in two live-bearing fish species

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

We studied maternal transfer of an essential metal (copper) and a non-essential one (cadmium) in the live-bearing fishes Heterandria formosa and Gambusia affinis. The goals of this study were: (1) to determine whether metals are transferred from exposed females to their developing offspring; (2) to determine if this transfer differs between two fish species that differ in their degree of maternal provisioning during development; (3) to determine the duration of maternal metal transfer once females are no longer exposed; and (4) to determine whether copper and cadmium are transferred equivalently. We exposed gravid females to background levels (control) or 0.15 µM of metal for 10 days, and then transferred them to clean water. We allowed females to give birth to up to three broods, and then quantified metal levels in offspring born at least 3 days after the transfer. We detected maternal metal transfer for both metals and in both species. Offspring metal levels decreased as females spent more time in clean water. Similarly, metal levels were lower in later broods than in earlier ones. Maternal metal transfer was higher in H. formosa than in G. affinis. Our results constitute the first report of maternal metal transfer in live-bearing fishes, and show that developing embryos acquire both essential and non-essential metals from their mothers in both species. This shows that metal toxicity may be an issue for live-bearing fish in clean environments when the previous generation has encountered metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelrahman MM, Kincaid RL (1993) Deposition of copper, manganese, zinc, and selenium in bovine fetal tissue at different stages of gestation. J Dairy Sci 76:3588–3593. doi:10.3168/jds.S0022-0302(93)77698-5

  • Ajayi OO, Charles-Davies MA, Arinola OG (2012) Progesterone, selected heavy metals and micronutrients in pregnant Nigerian women with a history of recurrent spontaneous abortion. Afr Health Sci 12:153–159. doi:10.4314/ahs.v12i2.12

    CAS  Google Scholar 

  • Amoroso E (1968) The evolution of viviparity. Proc R Soc Med 61:1188

    CAS  Google Scholar 

  • Baranowska I (1995) Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry. J Occup Environ Med 52:229–232. doi:10.1136/oem.52.4.229

    Article  CAS  Google Scholar 

  • Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2010) Bioaccumulation and maternal transfer of mercury and selenium in amphibians. Environ Toxicol Chem 29:989–997. doi:10.1002/etc.125

    Article  CAS  Google Scholar 

  • Biuki NA, Savari A, Mortazavi M, Zolgharnein H, Salamat N (2011) Accumulation and elimination of cadmium and lead in juvenile milkfish during sublethal exposure. Toxicol Environ Chem 93:2022–2033. doi:10.1080/02772248.2011.619539

    Article  CAS  Google Scholar 

  • Blackburn DG (1992) Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am Zool 32:313–321

    Google Scholar 

  • Blackburn DG (1999) Viviparity and oviparity: evolution and reproductive strategies. Encyclopedia of Reproduction. Academic Press, New York, pp 994–1003

    Google Scholar 

  • Blackburn DG (2000) Classification of the reproductive patterns of amniotes. Herpetol Mongr 14:371–377

    Article  Google Scholar 

  • Blackburn DG, Vitt LJ, Beuchat CA (1984) Eutherian-like reproductive specializations in a viviparous reptile. Proc Natl Acad Sci 81:4860–4863

    Article  CAS  Google Scholar 

  • Brix KV, DeForest DK, Adams WJ (2001) Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Environ Toxicol Chem 20:1846–1856

    Article  CAS  Google Scholar 

  • Finn RN (2007) The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat Toxicol 81:337–354. doi:10.1016/j.aquatox.2006.12.021

    Article  CAS  Google Scholar 

  • Galvez F, Wong D, Wood CM (2006) Cadmium and calcium uptake in isolated mitochondria-rich cell populations from the gills of the freshwater rainbow trout. Am J Physiol Regul Integr Comp Physiol 291:R170–R176. doi:10.1152/ajpregu.00217.2005

    Article  CAS  Google Scholar 

  • Goodwin NB, Dulvy NK, Reynolds JD (2002) Life-history correlates of the evolution of live bearing in fishes. Philos Trans R Soc Lond B Biol Sci 357:259–267

    Article  Google Scholar 

  • Gooneratne SR, Christensen DA (1989) A survey of maternal copper status and fetal tissue copper concentrations in Saskatchewan bovine. Can J Anim Sci 69:141–150. doi:10.4141/cjas89-017

    Article  CAS  Google Scholar 

  • Greig DJ, Ylitalo GM, Hall AJ, Fauquier DA, Gulland FMD (2007) Transplacental transfer of organochlorines in california sea lions (Zalophus californianus). Environ Toxicol Chem 26:37–44. doi:10.1897/05-609r.1

    Article  CAS  Google Scholar 

  • Greven H (2011) Gonads, genitals, and reproductive biology. In: Evans J, Pilastro A, Schlupp I (eds) Ecology and Evolution of Poeciliid Fishes. The University of Chicago Press, Chicago, pp 3–17

    Google Scholar 

  • Grosell M, Wood CM (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol 205:1179–1188

    CAS  Google Scholar 

  • Grove BD, Wourms JP (1994) Follicular placenta of the viviparous fish, Heterandria formosa: iI. Ultrastructure and development of the follicular epithelium. J Morphol 220:167–184. doi:10.1002/jmor.1052200206

    Article  Google Scholar 

  • Gundogdu A, Harmantepe FB, Karsli Z, Dogan G (2011) Elimination of copper in tissues and organs of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) following dietary exposure. Ital J Anim Sci 10:1–6. doi:10.4081/ijas.2011.e1

    Article  CAS  Google Scholar 

  • Handy RD, Eddy FB, Baines H (2002) Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine. Biochim Biophys Acta 1566:104–115

    Article  CAS  Google Scholar 

  • Harris ZL, Gitlin JD (1996) Genetic and molecular basis for copper toxicity. Am J Clin Nutr 63:836S–841S

    CAS  Google Scholar 

  • Hinkle PM, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262:16333–16337

    CAS  Google Scholar 

  • Hopkins WA, DuRant SE, Staub BP, Rowe CL, Jackson BP (2006) Reproduction, embryonic development, and maternal transfer of contaminants in the amphibian Gastrophryne carolinensis. Environ Health Perspect 114:661–666. doi:10.1289/ehp.8457

    Article  CAS  Google Scholar 

  • Jezierska B, Ługowska K, Witeska M (2009) The effects of heavy metals on embryonic development of fish (a review). Fish Physiol Biochem 35:625–640. doi:10.1007/s10695-008-9284-4

    Article  CAS  Google Scholar 

  • Kamunde C, Wood CM (2004) Environmental chemistry, physiological homeostasis, toxicology, and environmental regulation of copper, an essential alement in freshwater fish. Australasian J Ecotoxicol 10:1–20

    CAS  Google Scholar 

  • Kamunde C, Clayton C, Wood CM (2002) Waterborne vs. dietary copper uptake in rainbow trout and the effects of previous waterborne copper exposure. Am J Physiol Regul Integr Comp Physiol 283:R69–R78

    CAS  Google Scholar 

  • Kanakaraju D, Daud RA, Wahi R (2009) Preliminary study on accumulation and depuration of copper, zinc, and lead in tilapia (Oreochromis mossambicus) under laboratory conditions. J Sust Sci Manage 4:44–52

    CAS  Google Scholar 

  • Kim S-G, Jang S-W, Lee Y-J, Kim S-S (2011) Cu accumulation and elimination in the tissues of the olive flounder Paralichthys olivaceus. J Fish Aquat Sci 14:210–217

    CAS  Google Scholar 

  • Kotyzova D, Sundeman FW (1998) Maternal exposure to Cd(II) causes malformations of Xenopus laevis embryos. Ann Clin Lab Sci 28:224–235

    CAS  Google Scholar 

  • Koya Y, Kamiya E (2000) Environmental regulation of annual reproductive cycle in the mosquitofish, Gambusia affinis. J Exp Zool 286:204–211. doi:10.1002/(SICI)1097-010X(20000201)286:2

    Article  CAS  Google Scholar 

  • Lacoue-Labarthe T, Warnau M, Oberhänsli F, Teyssié J-L, Jeffree R, Bustamante P (2008) First experiments on the maternal transfer of metals in the cuttlefish Sepia officinalis. Mar Pollut Bull 57:826–831. doi:10.1016/j.marpolbul.2008.01.042

    Article  CAS  Google Scholar 

  • Lacoue-Labarthe T, Villanueva R, Rouleau C, Oberhänsli F, Teyssié J-L, Jeffree R, Bustamante P (2011) Radioisotopes demonstrate the contrasting bioaccumulation capacities of heavy metals in embryonic stages of cephalopod species. PLoS ONE 6:e27653. doi:10.1371/journal.pone.0027653

    Article  CAS  Google Scholar 

  • Lanno RP, Slinger SJ, Hilton JW (1985) Maximum tolerable and toxicity levels of dietary copper in rainbow trout (Salmo gairdneri Richardson). Aquaculture 49:257–268. doi:10.1016/0044-8486(85)90084-5

  • Le Bourg B, Kiszka J, Bustamante P (2014) Mother–embryo isotope (δ15 N, δ13C) fractionation and mercury (Hg) transfer in aplacental deep-sea sharks. J Fish Biol 84:1574–1581. doi:10.1111/jfb.12357

    Article  Google Scholar 

  • Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, George S, Xiong S, Wang X, Zhang H, Pokhrel S, Mädler L, Damoiseaux R, Lin S, Nel AE (2011) High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano 5:7284–7295. doi:10.1021/nn202116p

    Article  CAS  Google Scholar 

  • Marsh-Matthews E (2011) Matrotrophy. In: Evans J, Pilastro A, Schlupp I (eds) Ecology and Evolution of Fishes. University of Chicago Press, Chicago, pp 18–22

    Google Scholar 

  • Marsh-Matthews E, Deaton R (2006) Resources and offspring provisioning: a test of the Trexler-DeAngelis Model for matrotrophy evolution. Ecology 87:3014–3020. doi:10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2

    Article  Google Scholar 

  • Marsh-Matthews E, Skierkowski P, DeMarais A (2001) Direct evidence for mother-to-embryo transfer of nutrients in the livebearing fish Gambusia geiseri. Copeia 2001:1–6

    Article  Google Scholar 

  • Marsh-Matthews E, Brooks M, Deaton R, Tan H (2005) Effects of maternal and embryo characteristics on post-fertilization provisioning in livebearing fishes of the genus Gambusia. Oecologia 144:12–24

    Article  Google Scholar 

  • Marsh-Matthews E, Deaton R, Brooks M (2010) Survey of matrotrophy in lecithotrophic poeciliids. In: Uribe MC, Grier HJ (eds) Viviparous Fishes II. New Life Publications, Homestead, pp 13–30

    Google Scholar 

  • Muscatello JR, Bennett PM, Himbeault KT, Belknap AM, Janz DM (2006) Larval deformities associated with selenium accumulation in northern pike (Esox lucius) exposed to metal mining effluent. Environ Sci Technol 40:6506–6512. doi:10.1021/es060661h

    Article  CAS  Google Scholar 

  • Nevitt T, Öhrvik H, Thiele DJ (2012) Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta 1823:1580–1593. doi:10.1016/j.bbamcr.2012.02.011

  • Nishijo M, Nakagawa H, Honda R, Tanebe K (2002) Effects of maternal exposure to cadmium on pregnancy outcome and breast milk/Commentary. J Occup Environ Med 59:394–396

    Article  CAS  Google Scholar 

  • Nishimura T, Takanohashi T, Tomi M, Horikoshi M, Higuchi K, Sai Y, Nakashima E (2013) Evaluation of rat in vivo fetal-to-maternal transfer clearances of various xenobiotics by umbilical perfusion. J Pharm Sci 102:3356–3363. doi:10.1002/jps.23551

    Article  CAS  Google Scholar 

  • Oka M, Arai T, Shibata Y, Miyazaki N (2006) Reproductive transfer of organochlorines in viviparous surfperch, Ditrema temmincki. Environ Pollut 142:383–387. doi:10.1016/j.envpol.2005.10.022

    Article  CAS  Google Scholar 

  • Ostrach DJ, Low-Marchelli JM, Eder KJ, Whiteman SJ, Zinkl JG (2008) Maternal transfer of xenobiotics and effects on larval striped bass in the San Francisco Estuary. Proc Natl Acad Sci 105:19354–19359. doi:10.1073/pnas.0802616105

    Article  CAS  Google Scholar 

  • Pires MN, Banet AI, Pollux BJA, Reznick DN (2011) Variation and evolution of reproductive strategies. In: Evans J, Pilastro A, Schlupp I (eds) Ecology and Evolution of Poeciliid Fishes. The University of Chicago Press, Chicago, pp 18–37

    Google Scholar 

  • Pyke G (2006) A review of the biology of Gambusia affinis and G. holbrooki. Rev Fish Biol Fisher 15:339–365

    Article  Google Scholar 

  • Reznick DE, Miles DB (1989) Review of life history patterns in poeciliid fishes. In: Meffe GK, Snelson FF Jr (eds) Ecology and Evolution of Livebearing Fishes (Poeciliidae). Prentice-Hall, New Jersey, pp 125–148

    Google Scholar 

  • Ronald K, Frank RJ, Dougan J, Frank R, Braun HE (1984) Pollutants in harp seals (Phoca groenlandica). II. Heavy metals and selenium. Sci Total Enviro 38:153–166. doi:10.1016/0048-9697(84)90213-4

  • Saiki MK, Martin BA, May TW (2004) Reproductive status of western mosquitofish inhabiting selenium-contaminated waters in the grassland water district, Merced County, California. Arch Environ Contam Toxicol 47:363–369. doi:10.1007/s00244-004-2051-3

    Article  CAS  Google Scholar 

  • Schindler JF, Hamlett WC (1993) Maternal–embryonic relations in viviparous teleosts. J Exp Zool 266:378–393. doi:10.1002/jez.1402660506

    Article  Google Scholar 

  • Thompson J, Bannigan J (2008) Cadmium: Toxic effects on the reproductive system and the embryo. Reprod Toxicol 25:304–315. doi:10.1016/j.reprotox.2008.02.001

  • Trexler JC, DeAngelis DL, Jiang J (2011) Community assembly and mode of reproduction: predicting the distribution of livebearing fishes. In: Evans J, Pilastro A, Schlupp I (eds) Ecology and evolution of poeciliid fishes. The University of Chicago Press, Chicago, pp 95–108

    Google Scholar 

  • Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S

    CAS  Google Scholar 

  • Uribe MC, Grier HJ (2011) Oogenesis of microlecithal oocytes in the viviparous teleost Heterandria formosa. J Morphol 272:241–257. doi:10.1002/jmor.10912

    Article  Google Scholar 

  • Verbost PM, Van Rooij J, Flik G, LRA C, Wenderlaar Bonga SE (1989) The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J Exp Biol 145:185–197

    CAS  Google Scholar 

  • Wicklund-Glynn A, Norrgren L, Müssener Å (1994) Differences in uptake of inorganic mercury and cadmium in the gills of the zebrafish, Brachydanio rerio. Aquat Toxicol 30:13–26. doi:10.1016/0166-445x(94)90003-5

    Article  CAS  Google Scholar 

  • Williams DR, Giesy JP Jr (1978) Relative importance of food and water sources to cadmium uptake by Gambusia affinis (Poeciliidae). Environ Res 16:326–332

    Article  CAS  Google Scholar 

  • Witeska M, Sarnowski P, Ługowska K, Kowal E (2014) The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L. Fish Physiol Biochem 40:151–163. doi:10.1007/s10695-013-9832-4

    Article  CAS  Google Scholar 

  • Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. doi:10.1002/etc.5620170203

    Article  CAS  Google Scholar 

  • Wourms JP (1981) Viviparity: the maternal-fetal relationship in fishes. Am Zool 21:473–515. doi:10.1093/icb/21.2.473

    Google Scholar 

  • Wourms JP, Lombardi J (1992) Reflections on the evolution of piscine viviparity. Am Zool 32:276–293. doi:10.1093/icb/32.2.276

    Google Scholar 

  • Wourms JP, Grove BD, Lombardi J (1988) The maternal-embryonic relationship in viviparous fishes. In: Hoar WS, Randall DJ (eds) Fish Physiology, vol 10 B. Academic Press, New York, pp 1–134

    Google Scholar 

Download references

Acknowledgments

Funding for this research was provided, in part, by the University of Louisiana at Lafayette’s Ecology Center and the university’s Graduate Student Organization (GSO). We thank the Ecology Center for use of its facilities. We are grateful for technical expertise and assistance provided by Lewis Deaton, Don Ennis, Edith Marsh-Matthews, Susan Mopper, Paul Leberg, Ion Cazan, Aracelly Morales, Janica Cazan, Hau Le, Andrew Oguma, Anita Pant, Emmanuel Blankson, Kruuttika Satbhai, and Latonya Jackson.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfy Morales Cazan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazan, A.M., Klerks, P.L. Evidence of maternal copper and cadmium transfer in two live-bearing fish species. Ecotoxicology 23, 1774–1783 (2014). https://doi.org/10.1007/s10646-014-1342-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1342-3

Keywords

Navigation