Skip to main content
Log in

Toxicity and risk of permethrin and naled to non-target insects after adult mosquito management

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

We derived laboratory LC50 values, assessed non-target insect risks, and conducted a field bioassay for ultra-low-volume (ULV) aerosol applications of insecticides used to manage adult mosquitoes. The house cricket, Acheta domesticus (L.), was used as an indicator species for medium- to large-bodied ground dwelling insects. The 24-h LC50 values for Permanone® (formulated product of permethrin), Permanone + piperonyl butoxide (PBO), technical grade permethrin, and technical grade permethrin + PBO ranged from 0.052 to 0.9 μg/cm2. The 24 h LC50 for technical grade naled and Trumpet® (formulated product of naled) were 0.038 and 0.44 μg/cm2, respectively. The synergist ratio was 2.65 for Permanone + PBO and 1.57 for technical grade permethrin + PBO. The toxicity of technical grade permethrin was about 10-fold greater than Permanone. A risk assessment using modeled estimated environmental concentrations resulted in risk quotients (RQ) that exceeded regulatory levels of concern, but when compared to field-derived actual environmental concentrations RQs did not exceed a regulatory level of concern, except in the case of technical grade naled. These results were expected because higher tiered risk assessments using field-verified data generally lead to lower risk estimates. Field bioassays using caged crickets showed no significant mortality for permethrin or naled after a single truck-mounted ULV application. The results of the risk assessment using actual environmental concentrations are supported by the field bioassays and suggest that a single ULV application of synergized or unsynergized permethrin and naled most likely will not result in population impacts on medium- to large-bodied insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Alzogaray RA, Picollo MI, Zerba EN (1998) Independent and joint action of cis- and trans-permethrin in Triatoma infestans (Hemiptera: Reduviidae). Arch Insect Biochem Physiol 37:225–230

    Article  CAS  Google Scholar 

  • Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706

    Article  CAS  Google Scholar 

  • Antwi FB, Peterson RKD (2009) Toxicity to non-target insects after exposure to δ-phenothrin and resmethrin. Pest Manag Sci 65:300–305

    Article  CAS  Google Scholar 

  • Bass EL (1986) Use of the cricket Acheta domestica L. as a bioassay organism for the toxic extract from Gonyaulax monilata (dinophyceae). J Phycol 22:546–548

    Article  CAS  Google Scholar 

  • Boyce WM, Lawler SP, Schultz JM, McCauley SJ, Kimsey LS, Niemela MK, Nielsen CF, Reisen WK (2007) Nontarget effects of the mosquito adulticide pyrethrin applied aerially during a West Nile virus outbreak in an urban California environment. J Am Mosq Control Assoc 23:335–339

    Article  CAS  Google Scholar 

  • Brieger G, Wells JR, Hunter RD (1992) Plant and animal species composition and heavy metal content in fly ash ecosystems. Water Air Soil Pollut 63:87–103

    Article  CAS  Google Scholar 

  • Caron DM (1979) Effects of some ULV mosquito abatement insecticides on honey bees. J Econ Entomol 72:148–151

    CAS  Google Scholar 

  • Casabe N, Melgar F, Wood EJ, Zerba EN (1988) Insecticidal activity of pyrethroids against Triatoma infestans. Insect Sci Appl 9:233–236

    CAS  Google Scholar 

  • Coats JR, O’Donnell-Jeffery NL (1979) Toxicity of four synthetic pyrethroid insecticides to rainbow trout. Bull Environ Contam Toxicol 23:250–255

    Article  CAS  Google Scholar 

  • Davis RS, Peterson RKD (2008) Effects of single and multiple applications of mosquito insecticides on nontarget arthropods. J Am Mosq Control Assoc 24:270–280

    Article  Google Scholar 

  • Davis RS, Peterson RKD, Macedo PA (2007) An ecological risk assessment for insecticides used in adult mosquito management. Integr Environ Assess Manag 3:373–382

    Article  CAS  Google Scholar 

  • De Vries DH, Georghiou GP (1981) Absence of enhanced detoxification of permethrin in pyrethroid resistant house flies. Pestic Biochem Physiol 15:242–252

    Article  Google Scholar 

  • Farnham AW (1998) The mode of action of piperonyl butoxide with reference to studying pesticide resistance. In: Jones DG (ed) Piperonyl butoxide: the insecticide synergist. Academic Press, London, pp 199–213

    Google Scholar 

  • Giddings JM, Solomon KR, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: II. Aquatic mesocosm and field studies. Environ Toxicol Chem 20:660–668

    Article  CAS  Google Scholar 

  • Gist GL, Pless CD (1985) Synergistic activity of piperonyl butoxide with nine synthetic pyrethroids against the fall armyworm, Spodoptera frugiperda. Fla Entomol 68:316–319

    Article  CAS  Google Scholar 

  • Harris CR (1966) Influence of soil type on activity of insecticides in soil. J Econ Entomol 59:1221–1225

    CAS  Google Scholar 

  • Hester PG, Shaffer KR, Tietze NS, Zhong H, Griggs J Jr (2001) Efficacy of ground applied ultra low volume malathion on honey bee survival and productivity in open and forest areas. J Am Mosq Control Assoc 17:2–7

    CAS  Google Scholar 

  • Hill EF, Eliason DA, Kilpatri Jw (1971) Effects of ultra-low volume applications of Malathion in Hale County, Texas III. Effect on nontarget animals. J Med Entomol 8:173–179

    CAS  Google Scholar 

  • Hoekstra JA (1991) Estimation of the LC50, a review. Environmetrics 2:139–152

    Article  Google Scholar 

  • Hoffmann BD, Lowe LM, Griffiths AD (2002) Reduction in cricket (Orthoptera:Ensifera) populations along a gradient of sulphur dioxide from mining emissions in northern Australia. Aust J Entomol 41:182–186

    Article  Google Scholar 

  • Jensen T, Lawler SP, Dritz DA (1999) Effects of ultra-low volume pyrethrin, Malathion, and permethrin on nontarget invertebrates, sentinel mosquitoes, and mosquitofish in seasonally impounded wetlands. J Am Mosq Control Assoc 15:330–338

    CAS  Google Scholar 

  • Kwan JA, Novak MG, Hyles TS, Niemela MK (2009) Mortality of nontarget arthropods from an aerial application of pyrethrins. J Am Mosq Control Assoc 25:218–220

    Article  CAS  Google Scholar 

  • Lawler SP, Dritz DA, Johnson CS, Wolder M (2008) Does synergized pyrethrin applied over wetlands for mosquito control affect Daphnia magna zooplankton or Callibaetis californicus mayflies? Pest Manag Sci 64:843–847

    Article  CAS  Google Scholar 

  • Macedo PA, Peterson RKD, Davis RS (2007) Risk assessments for exposure of deployed military personnel to insecticides and personal protective measures used for disease-vector management. J Toxicol Environ Health A 70:1758–1771

    Article  CAS  Google Scholar 

  • Matsumura F (1985) Toxicology of insecticides. Plenum Press, New York, NY

    Google Scholar 

  • NRC (1983) Risk assessment in the federal government: managing the process. National Research Council, National Academy Press, Washington, DC

    Google Scholar 

  • Pankiw T, Jay SC (1992) Aerially applied ultra-low volume malathion effects on caged honey bees (Hymenoptera: Apidae), caged mosquitoes (Diptera: Culicidae), and malathion residues. J Econ Entomol 85:687–691

    CAS  Google Scholar 

  • Paul EA, Simonin HA (2006) Toxicity of three mosquito insecticides to crayfish. Bull Environ Contam Toxicol 76:614–621

    Article  CAS  Google Scholar 

  • Paul EA, Simonin HA, Tomajer TM (2005) A comparison of the toxicity of synergized and technical formulations of permethrin, sumithrin, and resmethrin to trout. Arch Environ Contam Toxicol 48:251–259

    Article  CAS  Google Scholar 

  • Perry AS, Yamamoto I, Ishaaya I, Perry RY (1998) Insecticides in agriculture and environment: retrospect and prospects. Springer-Verlag, Berlin

    Google Scholar 

  • Peterson RKD (2006) Comparing ecological risks of pesticides: the utility of a risk quotient ranking approach across refinements of exposure. Pest Manag Sci 62:46–56

    Article  CAS  Google Scholar 

  • Peterson RKD, Macedo PA, Davis RS (2006) A human-health risk assessment for West Nile virus and insecticides used in mosquito management. Environ Health Perspect 114:366–372

    Article  CAS  Google Scholar 

  • Pree DJ, Stevenson AB, Barszcz ES (1996) Toxicity of pyrethroid insecticides to carrot weevils: enhancement by synergists and oils. J Econ Entomol 89:1254–1261

    CAS  Google Scholar 

  • Robertson JL, Russell RM, Preisler HK, Savin NE (2007) Bioassays with arthropods. CRC Press, Boca Raton

    Google Scholar 

  • Rose RI (2001) Pesticides and public health: integrated methods of mosquito management. Emerg Infect Dis 7:17–23

    Article  CAS  Google Scholar 

  • Schleier JJ III, Peterson RKD (2010) Deposition and air concentrations of permethrin and naled used for adult mosquito management. Arch Environ Contam Toxicol 58:105–111

    Article  CAS  Google Scholar 

  • Schleier JJ III, Peterson RKD, Macedo PA, Brown DA (2008) Environmental concentrations, fate, and risk assessment of pyrethrins and piperonyl butoxide after aerial ultralow-volume applications for adult mosquito management. Environ Toxicol Chem 27:1063–1068

    Article  CAS  Google Scholar 

  • Schleier JJ III, Davis RS, Barber LM, Macedo PA, Peterson RKD (2009a) A probabilistic risk assessment for deployed military personnel after the implementation of the “Leishmaniasis control program” at Tallil air base, Iraq. J Med Entomol 46:693–702

    Article  CAS  Google Scholar 

  • Schleier JJ III, Macedo PA, Davis RS, Shama LM, Peterson RKD (2009b) A two-dimensional probabilistic acute human-health risk assessment of insecticide exposure after adult mosquito management. Stoch Environ Res Risk Assess 23:555–563

    Article  Google Scholar 

  • SETAC (1994) Aquatic dialogue group: pesticide risk assessment and mitigation. Society of Environmental Toxicology and Chemistry, Pensacola, FL

    Google Scholar 

  • Slooff W, van Oers JAM, de Zwart D (1986) Margins of uncertainty in ecotoxicological hazard assessment. Environ Toxicol Chem 5:841–852

    Article  CAS  Google Scholar 

  • Snodgrass GL (1996) Glass-vial bioassay to estimate insecticide resistance in adult tarnished plant bugs (Heteroptera: Miridae). J Econ Entomol 89:1053–1059

    CAS  Google Scholar 

  • Snodgrass GL, Adamczyk JJ, Gore J (2005) Toxicity of insecticides in a glass-vial bioassay to adult brown, green, and southern green stink bugs (Heteroptera: Pentatomidae). J Econ Entomol 98:177–181

    Article  CAS  Google Scholar 

  • Stevens MM, Ali A, Helliwell S, Schiller LJ, Hansen S (2002) Comparison of two bioassay techniques for assessing the acute toxicity of pesticides to chironomid larvae (Diptera: Chironomidae). J Am Mosq Control Assoc 18:119–125

    CAS  Google Scholar 

  • Tietze NS, Hester PG, Shaffer KR, Wakefield FT (1996) Peridomestic deposition of ultra-low volume malathion applied as a mosquito adulticide. Bull Environ Contam Toxicol 56:210–218

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1992) Framework for ecological risk assessment. EPA/630/R-92/001, Washington DC, pp 1–41

  • USEPA (United States Environmental Protection Agency) (1998) Guidelines for ecological risk Assessment. EPA/630/R-95/002F, Washington DC, pp 1–116

  • USEPA (United States Environmental Protection Agency) (2006) Technical overview of ecological risk assessment. http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm. Accessed 1 Nov

  • Weston DP, Amweg EL, Mekebri A, Ogle RS, Lydy MJ (2006) Aquatic effects of aerial spraying for mosquito control over an urban area. Environ Sci Technol 40:5817–5822

    Article  CAS  Google Scholar 

  • Wheeler MW, Park RM, Bailer AJ (2006) Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ Toxicol Chem 25:1441–1444

    Article  CAS  Google Scholar 

  • Williams DA (1982) Extra-binomial variation in logistic linear models. Appl Stat 31:144–148

    Article  Google Scholar 

  • Womeldorf DJ, Atkins EL, Gillies PA (1974) Honey bee hazards associated with some mosquito abatement aerial spray applications. California Vector Views 21:51–55

    Google Scholar 

  • Xu Q, Liu HQ, Zhang L, Liu NN (2005) Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest Manag Sci 61:1096–1102

    Article  CAS  Google Scholar 

  • Zhong HE, Latham M, Hester PG, Frommer RL, Brock C (2003) Impact of naled on honey bee survival and productivity: aerial ULV application using a flat fan nozzle system. Arch Environ Contam Toxicol 45:216–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Arkoudas and M. Mazzarelli (Cascade County Weed and Mosquito Control District), H. Hickes, A. Schaner, and J. Verreth (Montana State Department of Agriculture’s Chemical Analytical Laboratory), P. Connelly and B. Feiler (AMVAC Corp.), and J. Paige (Bayer Environmental Sciences). This research was supported by the US Armed Forces Pest Management Board’s Deployed War Fighter Protection Program and the Montana Agricultural Experiment Station, Montana State University, Bozeman, Montana, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome J. Schleier III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleier, J.J., Peterson, R.K.D. Toxicity and risk of permethrin and naled to non-target insects after adult mosquito management. Ecotoxicology 19, 1140–1146 (2010). https://doi.org/10.1007/s10646-010-0497-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-010-0497-9

Keywords

Navigation