Skip to main content
Log in

Comparative aquatic toxicity of the pyrethroid insecticide lambda-cyhalothrin and its resolved isomer gamma-cyhalothrin

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In this review we compare the sensitivity of a range of aquatic invertebrate and fish species to gamma-cyhalothrin (GCH), the insecticidally active enantiomer of the synthetic pyrethroid lambda-cyhalothrin (LCH), in single-species laboratory tests and outdoor multi-species ecosystem tests. Species sensitivity distribution curves for GCH gave median HC5 values of 0.47 ng/L for invertebrates, and 23.7 ng/L for fish, while curves for LCH gave median HC5 values of 1.05 ng/L and 40.9 ng/L for invertebrates and fish, respectively. A model ecosystem test with GCH gave a community-level no observed effect concentration (NOECcommunity) of 5 ng/L, while model ecosystem tests with LCH gave a NOECcommunity of 10 ng/L. These comparisons between GCH and LCH indicate that the single active enantiomer causes effects at approximately one-half the concentration at which the racemate causes similar effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali I, Gupta VK, Aboul-Enein HY (2003) Chirality: a challenge for the environmental scientists. Curr Sci 84(2):152–156

    CAS  Google Scholar 

  • Brock TCM, Arts GHP, Maltby L, van den Brink P (2006) Aquatic risks of pesticides, ecological protection goals, and common aims in European Union legislation. Integr Environ Assess Manag 2:e20–e46. doi:10.1897/1551-3793(2006)2[e20:AROPEP]2.0.CO;2

    Article  Google Scholar 

  • Cai X, Liu W, Sheng G (2008) Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater algal cultures. J Agric Food Chem 2008:2139–2146. doi:10.1021/jf0728855

    Article  Google Scholar 

  • Farmer D, Hill IR, Maund SJ (1995) A comparison of the fate and effects of two pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) in pond mesocosms. Ecotoxicol 4:219–244. doi:10.1007/BF00116342

    Article  CAS  Google Scholar 

  • Giddings JM, Brock TCM, Heger W, Heimbach F, Maund SJ, Norman SM, Ratte HT, Schäfers C, Streloke M (2002) Community level aquatic system studies—interpretation and criteria (CLASSIC). Society of Environmental Toxicology and Chemistry, Pensacola

    Google Scholar 

  • Henry KS, McClymont EL, Najar JR (2003a) XDE-225: an acute toxicity study with the amphipod, Gammarus pseudolimnaeus. Report No. 021059. Dow Chemical Company, Midland

    Google Scholar 

  • Henry KS, McClymont EL, Najar JR (2003b) XDE-225: toxicity testing with various life stages of the amphipod Gammarus pseudolimnaeus. Study No. 021119. Dow Chemical Company, Midland

    Google Scholar 

  • Hill IR, Runalls JK, Kennedy JH, Ekoniak P (1994a) Effects of lambda-cyhalothrin on aquatic organisms in large-scale mesocosms. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis Pubs, Boca Raton, pp 345–360

    Google Scholar 

  • Hill IR, Runalls JK, Kennedy JH, Ekoniak P (1994b) Lambda-cyhalothrin: a mesocosm study of its effects on aquatic organisms. In: Graney RL, Kennedy JH, Rodgers JH (eds) Aquatic mesocosm studies in ecological risk assessment. Lewis Pub, Boca Raton, pp 403–468

    Google Scholar 

  • Kirk HD, Giles MM, McClymont EL, McFadden LG (2000) XR-225: growth inhibition test with the freshwater green alga, Selenastrum capricornutum Printz. Study No. 001093. Dow Chemical Company, Midland

    Google Scholar 

  • Kirk HD, Henry KS, Staley JL, McClymont EL, McFadden LG (2001) XDE-225: evaluation of the chronic toxicity with the daphnid, Daphnia magna Straus. Study No. 011051. Dow Chemical Company, Midland

    Google Scholar 

  • Liu W, Gan J, Lee S, Werner I (2004) Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. J Agric Food Chem 52:6233–6238. doi:10.1021/jf0490910

    Article  CAS  Google Scholar 

  • Liu W, Gan J, Lee S, Werner I (2005a) Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. Environ Toxicol Chem 24:1861–1866. doi:10.1897/04-457R.1

    Article  CAS  Google Scholar 

  • Liu W, Gan J, Schlenk D, Jury WA (2005b) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci USA 102:701–706. doi:10.1073/pnas.0408847102

    Article  CAS  Google Scholar 

  • Machado MW (2001a) XDE-225 and lambda-cyhalothrin: comparative toxicity to rainbow trout (Oncorhynchus mykiss) under flow-through conditions. Study No. 011056. Dow Chemical Company, Midland

    Google Scholar 

  • Machado MW (2001b) XDE-225 and lambda-cyhalothrin: comparative toxicity to daphnids (Daphnia magna) under static-renewal conditions. Study No. 011050. Dow Chemical Company, Midland

    Google Scholar 

  • Maltby L, Blake N, Brock TCM, van den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388. doi:10.1897/04-025R.1

    Article  CAS  Google Scholar 

  • Marino TA, Rick DL (2000a) XR-225: an acute toxicity study with the rainbow trout, Oncorhynchus mykiss Walbaum. Study No. 001073. Dow Chemical Company, Midland

    Google Scholar 

  • Marino TA, Rick DL (2000b) XR-225: an acute toxicity study with the daphnia, Daphnia magna Strauss. Study No. 001075. Dow Chemical Company, Midland

    Google Scholar 

  • Marino TA, Rick DL (2001a) XR-225: an acute toxicity study with the bluegill sunfish, Lepomis macrochirus Rafinesque. Study No. 001074(A). Dow Chemical Company, Midland

    Google Scholar 

  • Marino TA, Rick DL (2001b) XR-225 and lambda-cyhalothrin: an acute toxicity comparison study with the bluegill sunfish, Lepomis macrochirus Rafinesque. Study No. 001074. Dow Chemical Company, Midland

    Google Scholar 

  • Maund SJ, Hamer MJ, Warinton JS, Kedwards TJ (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pestic Sci 54:408–417. doi:10.1002/(SICI)1096-9063(199812)54:4<408::AID-PS843>3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Posthuma L, Suter GW II, Traas TP (2002) Species sensitivity distributions in ecotoxicology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Roessink I, Arts GHP, Belgers JDM, Bransen F, Maund SJ, Brock TCM (2005) Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status. Environ Toxicol Chem 24:1684–1696. doi:10.1897/04-130R.1

    Article  CAS  Google Scholar 

  • Schroer A, Belgers J, Brock T, Matser A, Maund S, van Den Brink P (2004) Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide λ-cyhalothrin on freshwater invertebrates. Arch Environ Contam Toxicol 46:324–335. doi:10.1007/s00244-003-2315-3

    Article  CAS  Google Scholar 

  • Sewell IG, McKenzie J (2006a) Gamma-cyhalothrin: acute toxicity to fathead minnow (Pimephales promelas). SafePharm laboratories project No. 2119/0014. The Dow Chemical Company report 050607. April, 2006

  • Sewell IG, McKenzie J (2006b) Gamma-cyhalothrin: acute toxicity to guppy (Poecilia reticulata). SafePharm laboratories project No. 2119/0013. The Dow Chemical Company report 050606. April, 2006

  • Sewell IG, McKenzie J (2006c) Gamma-cyhalothrin: acute toxicity to zebra fish (Brachydanio rerio). SafePharm laboratories project No. 2119/0015. The Dow Chemical Company report 050608. April, 2006

  • U.S. EPA (United States Environmental Protection Agency) (2007) Office of pesticide programs (OPP) pesticide toxicity database. http://www.ipmcenters.org/Ecotox/index.cfm. Accessed Dec 2007

  • Van den Brink PJ, ter Braak CJF (1998) Multivariate analysis of stress in experimental ecosystems by principal response curves and multivariate analysis. Aquat Ecol 32:163–178. doi:10.1023/A:1009944004756

    Article  Google Scholar 

  • Van den Brink PJ, ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of a biological community to stress. Environ Toxicol Chem 18:138–148. doi:10.1897/1551-5028(1999)018<0138:PRCAOT>2.3.CO;2

    Article  Google Scholar 

  • Van Wijngaarden RPA, Barber I, Brock TCM (2008) Effects of the pyrethroid insecticide gamma-cyhalothrin on aquatic invertebrates in laboratory and outdoor microcosm tests. Ecotoxicology. doi:10.1007/s10646-008-0274-1

  • Van Wijngaarden RPA, Brock TCM, van den Brink PJ, Gylstra R, Maund SJ (2006) Ecological effects of spring and late summer applications of lambda-cyhalothrin on freshwater microcosms. Arch Environ Contam Toxicol 50:220–239. doi:10.1007/s00244-004-0249-z

    Article  CAS  Google Scholar 

  • Xu C, Wang J, Liu W, Sheng G, Tu Y, Ma Y (2008) Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin. Environ Toxicol Chem 27:174–181. doi:10.1897/07-134.1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Giddings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giddings, J.M., Barber, I. & Warren-Hicks, W. Comparative aquatic toxicity of the pyrethroid insecticide lambda-cyhalothrin and its resolved isomer gamma-cyhalothrin. Ecotoxicology 18, 239–249 (2009). https://doi.org/10.1007/s10646-008-0277-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0277-y

Keywords

Navigation