Skip to main content
Log in

Effect of 2,4-D herbicide (2,4-dichlorophenoxyacetic acid) on oxygen consumption and ammonium excretion of juveniles of Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Fish form important fisheries and aquaculture resources worldwide. In Brazil, pearl eartheater (Geophagus brasiliensis) is an important commercially exploited species and is an ideal animal for studying the impairment caused by the effects of herbicides that are often detected in the aquatic environment. The main purpose of the present study was to detect the acute toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) to G. brasiliensis and investigate its effects on oxygen consumption, ammonium excretion, and the neutral red retention time assay to estimate effects at the cellular level. Such investigations have not been carried out before with this species. First, the acute toxicity of 2,4-D to G. brasiliensis in terms of the 24-, 48-, 72-, and 96-h medium lethal concentration (LC50) was calculated to be 45.95, 32.49, 28.28, and 15.16 mg/l, respectively. Furthermore, it was found that exposure of fish to 40 mg/l 2,4-D caused reduction in oxygen consumption and ammonium excretion of 59% and 85%, respectively, in relation to the controls. Mean neutral red retention time assay was significantly lower in comparison with control for organisms exposed to 1, 5, 10, and 40 mg/l 2,4-D. However, the effects at the cellular level were progressive, suggesting that the fish are not able to recover from such increasing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abessa DMS, Zaroni LP, Sousa ECPM, Gasparro MR, Pereira CDS, Rachid BRF et al (2005) Physiological and cellular responses in two populations of the mussel Perna perna collected at different sites from the coast of São Paulo, Brazil. Braz Arch Biol Technol 48(2):217–225. doi:10.1590/S1516-89132005000200008

    Article  Google Scholar 

  • Andreata JV, Tenório MMB (1997) Aspectos da alimentação de Geophagus brasiliensis (Quoy and Gaimard 1824) da lagoa Rodrigo de Freitas, Rio de Janeiro, Brasil. Acta Biol Leopoldensis 19(2):185–195

    Google Scholar 

  • Barbieri E (2007) Use of metabolism and swimming activity to evaluate the sublethal toxicity of surfactant (LAS-C12) on Mugil platanus. Brazil Arch Biol Technol 50(1):101–112. doi:10.1590/S1516-89132007000100012

    CAS  Google Scholar 

  • Barbieri E, Phan VN, Gomes V (1998) Efeito do DSS, dodecil sulfato de sódio, no metabolismo e na capacidade de natação de Cyprinus carpio. Rev Brasil Biol 58(2):263–271

    CAS  Google Scholar 

  • Barbieri E, Phan VN, Gomes V (2000) Effects of LAS-C12, linear alkybenzene sulphonate, on metabolic rate and swimming capacity of Cyprinus carpio. Ecotox Environ Rest 3(2):60–75

    Google Scholar 

  • Barbieri E, Serralheiro PC, Rocha IO (2002) The use of metabolism to evaluate the toxicity of dodecil benzen sodium sulfonate (LAS-C12) on the Mugil platanus (mullet) according to the temperature and salinity. J Exp Mar Biol Ecol 277(2):109–127. doi:10.1016/S0022-0981(02)00236-8

    Article  CAS  Google Scholar 

  • Barbieri E, Passos EA, Garcia CAB (2005) Use of metabolism to evaluate the sublethal toxicity of mercury on Farfantepaneus brasiliensis larvae (Latreille 1817, Crustacean). J Shellfish Res 24(4):1229–1234

    Google Scholar 

  • Boudou A, Ribeyre F (1989) Fish as “biological model” for experimental studies in ecotoxicology. In: Boudou A, Ribeyre F (eds) Aquatic ecotoxicology fundamental concepts and methodologies, vol VIII. CRC, Boca Raton, Florida, pp 127–150

    Google Scholar 

  • Bragadin M, Perin G, Raccanelli S, Manente S (1996) The accumulation in lysosomes of the anionic detergent linear alkylbenzene sulfonate. Environ Toxicol Chem 15(10):1749–1751. doi:10.1897/1551-5028(1996)015<1749:TAILOT>2.3.CO;2

    Google Scholar 

  • Campos SX, Vieira EM (2002) Estudo da degradação do herbicida ácido 2,4-diclorofenoxiacético (2,4-D) por meio da radiação gama do cobalto-60 em solução aquosa contendo ácido húmico. Quim Nova 25(4):529–532. doi:10.1590/S0100-40422002000400003

    Google Scholar 

  • Chinni S, Khan RN, Yallapragada PR (2002) Acute toxicity of lead on tolerance, oxygen consumption, ammonia-N excretion, and metal accumulation in Penaeus indicus postlarvae. Ecotoxicol Environ Saf 51(1):79–84. doi:10.1006/eesa.2000.2019

    Article  CAS  Google Scholar 

  • Christiansen PD, Brozek K, Hansen BW (1998) Energetic and behavioral responses by the common goby, Pomatoschistus microps (kroyer), exposed to linear alkybenzene sulfonate. Environ Toxicol Chem 17(10):2051–2057. doi:10.1897/1551-5028(1998)017<2051:EABRBT>2.3.CO;2

    Google Scholar 

  • Dawson M, Renfro JL (1993) Interaction of structurally similar pesticides with organic anion transport by primary cultures of winter flounder renal proximal tubule. J Pharmacol Exp Ther 266(2):673–677

    CAS  Google Scholar 

  • Dierickx PJ (1985) Hepatic glutathione-S-transferases in rainbow trout and their interaction with 2,4-dichlorophenoxyacetic acid and 1,4-benzoquinone. Comp Biochem Physiol C 82(2):495–500. doi:10.1016/0742-8413(85)90199-9

    Article  CAS  Google Scholar 

  • Gomez L, Duran E, Gazquez A, Martinez S, Masot J, Roncero V (2002) Lesions induced by 2,4-D and chlorpyrifos in tench (Tinca tinca L.): implication in toxicity studies. J Environ Sci Health B 37(1):43–51. doi:10.1081/PFC-120002896

    Article  CAS  Google Scholar 

  • Farah MA, Ateeq B, Ali MN, Sabir R, Ahmad W (2004) Studies on concentration and toxicity stress of some xenobiotics on aquatic organism. Chemosphere 55:257–265. doi:10.1016/j.chemosphere.2003.10.063

    Article  CAS  Google Scholar 

  • Huang BQ, Wang DY (1995) Corneal damage in young tigerperch (Terapon jarbua) exposed to the surfactant linear alkylbenzene sulfonate (LAS). Zool Stud 34(1):41–46

    CAS  Google Scholar 

  • Johnson WW, Finley MT (1980) Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Fish and wildlife service resource publication no. 137. U.S. Department of the Interior, Washington, DC

    Google Scholar 

  • Lemaire P, Sturve J, Forlin L, Livingstone DR (1996) Studies on aromatic hydrocarbon quinone metabolism and DT-diaphorase function in liver of fish species. Mar Environ Res 2(1–4):317–321. doi:10.1016/0141-1136(95)00042-9

    Article  Google Scholar 

  • Lowe DM, Fossato VU, Depledge MH (1995) Contaminant-induced lysosomal membrane damage in blood cells of mussels Mytilus galloprovincialis from venice lagoon: an in vitro study. Mar Ecol Prog Ser 129:189–196. doi:10.3354/meps129189

    Article  Google Scholar 

  • Mamaca E, Bechmann RK, Torgrimsen S, Aas E, Bjørnstad A, Baussant T et al (2005) The neutral red lysosomal retention assay and Comet assay on haemolymph cells from mussels (Mytilus edulis) and fish (Symphodus melops) exposed to styrene. Aquat Toxicol 75(3):191–201. doi:10.1016/j.aquatox.2005.08.001

    Article  CAS  Google Scholar 

  • Mayzaud P, Conover RJ (1988) O:N atomic ratio as a tool to describe zooplankton metabolism. Mar Ecol Prog Ser 45(3):289–302. doi:10.3354/meps045289

    Article  CAS  Google Scholar 

  • McFarland WN, Lee BD (1963) Osmotic and ionic concentration of shrimp of the texas coast. Bull Mar Sci 13(1):391–416

    Google Scholar 

  • Mcveigh A, Moore M, Allen JI, Dyke P (2006) Lysosomal responses to nutritional and contaminant stress in mussel hepatopancreatic digestive cells: a modelling study. Mar Environ Res 62(Suppl 1):433–438. doi:10.1016/j.marenvres.2006.04.021

    Article  CAS  Google Scholar 

  • Misra V, Lal H, Chawla G, Viswanathan PN (1985) Pathomorphological changes in gills of fish fingerlings (Cirrhina mrigala) by linear alky benzene sulfonate. Ecotoxicol Environ Saf 10:302–308. doi:10.1016/0147-6513(85)90077-6

    Article  CAS  Google Scholar 

  • Moore MN (1982) Lysosomes and environmental stress. Mar Pollut Bull 13(2):42–43. doi:10.1016/0025-326X(82)90438-6

    Article  CAS  Google Scholar 

  • Moran JM, Morgan MD, Wiersma D, James H (1980) Introduction to environmental science, 2nd edn. WH Freeman, New York, NY

    Google Scholar 

  • Munro IC, Caro GL, Orr JC, Sund KG, Wilson RM, Kennepohl E et al (1992) A comprehensive, integrated review and evaluation of the scientific evidence relating to the safety of the herbicide 2,4-D. J Am Coll Toxicol 11(5):559–647

    CAS  Google Scholar 

  • Olsen RE, Sundell K, Mayhew TM, Myklebust R, Ring E (2006) Acute stress alters intestinal function of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture 250(1–2):480–495. doi:10.1016/j.aquaculture.2005.03.014

    Google Scholar 

  • Palanivelu V, Vijayavel K, Ezhilarasibalasubramanian E, Balasubramaniun MP (2005) Impact of fertilizer (urea) on oxygen consumption and feeding energitics in the freshwater fish Oreochromis mossambicus. Environ Toxicol Pharmacol 19:351–355. doi:10.1016/j.etap.2004.09.001

    Article  CAS  Google Scholar 

  • Regoli F (2000) Total oxyradical scavenging capacity (TOSC) in polluted and translocated mussels: a predictive biomarker of oxidative stress. Aquat Toxicol 50(4):351–361. doi:10.1016/S0166-445X(00)00091-6

    Article  CAS  Google Scholar 

  • Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S et al (2002) Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54(3–5):419–423. doi:10.1016/S0141-1136(02)00146-0

    Article  CAS  Google Scholar 

  • Rehwoldt RE, Kelley E, Mahoney M (1977) Investigations into the acute toxicity and some chronic effects of selected herbicides and pesticides on several fresh water fish species. Bull Environ Contam Toxicol 18(3):361–365. doi:10.1007/BF01683433

    Article  CAS  Google Scholar 

  • Rosas C, Martinez E, Gaxiola G, Brito R, Sanchez A, Soto LA (1999) The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion, and osmotic pressure of Penaeus setiferus juveniles. J Exp Mar Biol Ecol 234(1):41–57. doi:10.1016/S0022-0981(98)00139-7

    Article  Google Scholar 

  • Sarikaya R, Yilmaz M (2003) Investigation of acute toxicity and the effect of 2,4-D (2,4-dichlorophenoxyacetic acid) herbicide on the behavior of the common carp (Cyprinus carpio l., 1758; pisces, cyprinidae). Chemosphere 52(1):195–201. doi:10.1016/S0045-6535(03)00106-1

    Article  CAS  Google Scholar 

  • Santos DMM, Banzatto DA (1998) Influência de Herbicidas em Macrófitas Aquáticas. Pesquisa Agropecu Bras 33(6):37–43

    Google Scholar 

  • Silvano RAM, Oyakawa OT, Amaral BD, Begossi A (2001) Peixes do alto rio Juruá (Amazônia, Brasil). Universidade de São Paulo Imprensa Oficial do Estado, São Paulo, São Paulo

    Google Scholar 

  • Solarzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  Google Scholar 

  • St-Amand L, Gagnon R, Packard TT, Savenkoff C (1999) Effects of inorganic mercury on the respiration and the swimming activity of shrimp larvae, Pandalus borealis. Comp Biochem Physiol C 122(1):33–43

    CAS  Google Scholar 

  • Stefanoni MF, Abessa DMS (2008) Lysossomal membrane stability of the brown mussel Perna perna (Linnaeus) (Mollusca, Bivalvia) exposed to the anionic surfactant linear alkylbenzene sulphonate (LAS). Pan-American J Aquat Sci 3(1):6–9

    Google Scholar 

  • Vardia HK, Durve VS (1981) The toxicity of 2, 4-D to Cyprinus carpio var. communis in relation to the seasonal variation in the temperature. Hydrobiologia 77(2):155–159. doi:10.1007/BF00008874

    Article  CAS  Google Scholar 

  • Wang YS, Yen JH, Hsieh YN, Chen YL (1994) Dissipation of 2,4-D glyphosate and paraquat in river water. Water, Air, Soil Pollut 72(1–4):1–7

    Article  CAS  Google Scholar 

  • Wu JP, Chen HC (2004) Effects of cadmium and zinc on oxygen consumption, ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei). Chemosphere 57:1591–1598. doi:10.1016/j.chemosphere.2004.07.033

    Article  CAS  Google Scholar 

  • Zaccone G, Lo Cascio P, Fasulo S, Licata A (1985) The Effect of an anionic detergent on complex carbohydrates and enzyme activities in the epidermis of the catfish Heteropneustes fossilis (Bloch). Histochem J 17:453–466. doi:10.1007/BF01003205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Financiadora de Estudos e Projetos (Brazil) for support during the accomplishment of this work. Thanks are also given to Dr. Marion Nipper of the Texas A & M University. Corpus Christi, for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edison Barbieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, E. Effect of 2,4-D herbicide (2,4-dichlorophenoxyacetic acid) on oxygen consumption and ammonium excretion of juveniles of Geophagus brasiliensis (Quoy & Gaimard, 1824) (Osteichthyes, Cichlidae). Ecotoxicology 18, 55–60 (2009). https://doi.org/10.1007/s10646-008-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0256-3

Keywords

Navigation