Skip to main content
Log in

The use of the multivariate Principal Response Curve (PRC) for community level analysis: a case study on the effects of carbendazim on enchytraeids in Terrestrial Model Ecosystems (TME)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The effects of the fungicide carbendazim (formulation Derosal®) on enchytraeids were determined in Terrestrial Model Ecosystem (TME) tests. TMEs consisted of intact soil columns (diameter 17.5 cm; length 40 cm) taken from three grassland sites (Amsterdam (The Netherlands), Bangor (Wales, England) and Flörsheim (Germany)) or an arable site (Coimbra (Portugal)). Results for each TME site were evaluated using the multivariate Principal Response Curve (PRC) method. The resulting No-Observable Effect Concentrations (NOECs) for the community were compared with the NOECs generated by univariate statistical methods. Furthermore, the EC50s (median effect concentrations) for the three taxa with the highest taxon weights determined by the PRC were compared with EC50s for the other endpoints. In eight out of 16 cases the PRC revealed the lowest NOEC for the enchytraeid species community. The lowest EC50s with the closest 95% confidence limits were calculated for the abundance of the three taxa with the highest taxon weights identified by the PRC. The EC50s ranging from 0.19–2.79 mg carbendazim/kg soil are similar to values from laboratory toxicity studies reported in the literature. Therefore, PRC is a useful instrument to analyse microcosm and mesocosm experiments; it allows for determination of NOECs for the species community (NOECcommunity), the evaluation of the taxa with the most pronounced treatment-related decrease in abundance and of the calculation of meaningful EC50 values for those. The resulting NOECcommunity and EC50 values offer a comprehensive tool for the risk assessment of chemicals at the ecosystem level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamsen G (1969) Enchytraeus norvegicus sp. nov.: a new species of Enchytraeidae (Oligochaeta) from Norway. Norw J Zool 17:161–164

    Google Scholar 

  • Cairns J Jr (1984) Multispecies toxicity testing. Environ Toxicol Chem 3:1–3

    Article  Google Scholar 

  • Cuppen JGM, Van den Brink PJ, Camps E, Uil KF, Brock TCM (2000) Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates. Aquat Toxicol 48:233–250

    Article  CAS  Google Scholar 

  • Didden WAM (1993) Ecology of terrestrial Enchytraeidae. Pedobiologia 37:2–29

    Google Scholar 

  • Didden WAM, Fruend HL, Graefe U (1997) Enchytraeids. In: Benckiser G (ed) Fauna in soil ecosystems—recycling processes, nutrient fluxes and agricultural production. Marcel Dekker, Incorporation, New York, USA, pp 135–172

    Google Scholar 

  • Didden WAM, Römbke J (2001) Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems. Ecotoxicol Environ Safe 50:25–43

    Article  CAS  Google Scholar 

  • Dózsa-Farkas K (1992a) List of Enchytraeid Synonyma. Newslett Enchytraeidae 3:16–46

    Google Scholar 

  • Dózsa-Farkas K (1992b) Über die vertikale Verbreitung der Enchytraeiden (Oligochaeta: Enchytraeidae) in einem Hainbuchen-Eichenwald Ungarns. Opuscula Zoologica Budapest 25:61–74

    Google Scholar 

  • EC (2002) Guidance document on aquatic ecotoxicology. Working Document SANCO/3268/2002 rev.4 (final), 17 October 2002 under Council Directive 91/414/EEC. European Commission, Brussels

  • EPPO (2003) Environmental risk assessment for plant protection products. Soil organisms and functions, Chapt. 8. Revised version. European and Mediterranean Plant Protection Organization, EPPO Bull 33:195–209

  • Federschmidt A (1994) Die Oligochätenfauna zweier Ökosysteme auf Lößlehm unter Berücksichtigung der Auswirkungen von Chemikalienstress. Ph.D. thesis, Johann Wolfgang Goethe Universität, Frankfurt/M, Germany

  • Frampton GK, Van den Brink PJ, Gould P (2000) Effects of spring precipitation on a temperate arable collembolan community analysed using Principal Response Curves. Appl Soil Ecol 14:231–248

    Article  Google Scholar 

  • Gillett JW, Witt JM (1980) Chemical evaluation: projected evaluation of terrestrial microcosm technology. In: Giesy JP Jr (ed) Microcosms in ecological research. National Technical Information Center, US Department of Energy, Springfield, Virginia, USA, pp 1008–1033

    Google Scholar 

  • Graefe U (1989) Systematische Untersuchungen an der Gattung Achaeta (Enchytraeidae, Clitellata) 2. Beschreibung von vier neuen Arten. Mitt Hamb Zool Mus Inst 86:127–131

    Google Scholar 

  • Graefe U, Schmelz R (1999) Indicator values, strategy, types and life forms of terrestrial Enchytraeidae and other microannelids. Newslett Enchytraeidae 6:59–68

    Google Scholar 

  • Haanstra L, Doelman P, Oude Voshaar JH (1985) The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293–297

    Article  CAS  Google Scholar 

  • Healy B (1980) Distribution of terrestrial Enchytraeidae in Ireland. Pedobiologia 20:159–175

    Google Scholar 

  • Heck M, Römbke J (1991) Two new species of Achaeta (Enchytraeidae, Oligochaeta) from meadow and pasture soils of Germany. Zool Scr 20:215–220

    Article  Google Scholar 

  • ISO (2004) Soil quality—sampling of soil invertebrates—Part 3: sampling and soil extraction of enchytraeids. ISO guideline 23661-3. International Organisation for Standardisation, Geneva

  • Jones SE, Williams DJ, Holliman PJ, Förster B, Van Gestel CAM, Rodrigues JML, Baumann H-J, Taylor N (2004) Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)—an instrument for testing potentially harmful substances: fate of the model chemical carbendazim. Ecotoxicology 13:29–42

    Article  CAS  Google Scholar 

  • Knacker T, Van Gestel CAM, Jones SE, Soares AMVM, Schallnass H-J, Förster B, Edwards CA (2004) Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)—an instrument for testing potentially harmful substances: conceptual approach and study design. Ecotoxicology 13:9–27

    Article  CAS  Google Scholar 

  • Koolhaas JE, Van Gestel CAM, Römbke J, Soares AMVM, Jones SE (2004) Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)—an Instrument for testing potentially harmful substances: effects of carbendazim on soil microarthropod communities. Ecotoxicology 13:75–88

    Article  CAS  Google Scholar 

  • Landis WG, Matthews RA, Matthews GB (1997) Design and analysis of multispecies toxicity tests for pesticide registration. Ecol Appl 7:1111–1116

    Article  Google Scholar 

  • Moser T (2004) Auswirkungen des Fungizids Carbendazim auf Enchytraeidae (Annelida, Oligochaeta) in terrestrischen Modellökosystemen und im Freiland. Ph.D. thesis, Johann Wolfgang Goethe-Universtät, Frankfurt/Main, Germany

  • Moser T, Van Gestel CAM, Jones SE, Koolhaas JE, Rodrigues JML, Römbke J (2004) Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)—an instrument for testing potentially harmful substances: effects of carbendazim on enchytraeids. Ecotoxicology 13:89–103

    Article  CAS  Google Scholar 

  • Nielsen CO, Christensen B (1959) The Enchytraeidae, critical revision and taxonomy of European species. Nat Jutl 8–9:1–160

    Google Scholar 

  • Nielsen CO, Christensen B (1961) The Enchytraeidae, critical revision and taxonomy of European species. Nat Jutl 10(Supplement 1):1–23

    Google Scholar 

  • Nielsen CO, Christensen B (1963) The Enchytraeidae, critical revision and taxonomy of European species. Nat Jutl 10(Supplement 2):1–19

    Google Scholar 

  • Römbke J, Moser T (1999) Organisation and performance of an international ringtest for the validation of the Enchytraeid reproduction test. UBA-Text 4/99, Berlin, Germany

  • Rota E (1994) Enchytraeidae (Oligochaeta) of western Anatolia: taxonomy and faunistics. Boll Zool 61:241–260

    Google Scholar 

  • Rota E (1995) Italian Enchytraeidae. Boll Zool 62:183–231

    Google Scholar 

  • Rota E, Healy B (1999) A taxonomic study of some Swedish Enchytraeidae (Oligochaeta) with descriptions of four new species and notes on the genus Fridericia. J Nat Hist 33:29–64

    Article  Google Scholar 

  • Schmelz RM (2003) Taxonomy of Fridericia (Enchytraeidae, Oligochaeta). Critical revision of species with morphological and biochemical methods. Abh Naturwiss Ver Hamburg 38:488

    Google Scholar 

  • Sheppard SC (1997) Toxicity testing using microcosms. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. Lewis Publisher, Boca Raton, USA, pp 345–373

    Google Scholar 

  • Smit CE, Schouten AJ, Van den Brink PJ, van Esbrock MLP, Posthuma L (2002) Effects of zinc contamination on a natural nematode community in outdoor soil mesocosms. Arch Environ Contam Toxicol 42:205–216

    Article  CAS  Google Scholar 

  • Ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to canoco for windows. Software for canonical community ordination (version 4). MicroComputer Power, Ithaca, New York, USA

    Google Scholar 

  • Van den Brink PJ, Ter Braak CJF (1998) Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquat Ecol 32:163–178

    Article  Google Scholar 

  • Van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148

    Article  Google Scholar 

  • Van den Brink P, Van Donk E, Gylstra R, Crum S, Brock T (1995) Effects of chronic low concentrations of the pesticides chloropyrifos and atrazine in indoor freshwater microcosms. Chemosphere 31:3181–3200

    Article  Google Scholar 

  • Van den Brink P, Van Wijngaarden RPA, Gylstra R, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban 4E (active ingredient chloropyrifos) in outdoor experimental ditches: II. Invertebrate community responses and recovery. Environ Toxicol Chem 15:1143–1153

    Article  Google Scholar 

  • Van Voris P, Tolle DA, Arthur MF (1985) Experimental terrestrial soil-core microcosm test protocol. EPA/600/3–85/047 PNL-5450, UC-11, United States Environmental Protection Agency, Washington, USA

  • Velthorst EJ (1993) Manual for chemical water analysis. Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands

    Google Scholar 

Download references

Acknowledgements

This work was partly conducted in the frame of the TME-project, which was financially supported by the European Union (Project No. ENV4-CT97-0470). The statistical advice given by Hans-Toni Ratte is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, T., Römbke, J., Schallnass, HJ. et al. The use of the multivariate Principal Response Curve (PRC) for community level analysis: a case study on the effects of carbendazim on enchytraeids in Terrestrial Model Ecosystems (TME). Ecotoxicology 16, 573–583 (2007). https://doi.org/10.1007/s10646-007-0169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-007-0169-6

Keywords

Navigation