Skip to main content
Log in

Evaluation of cyanobacteria toxicity in tropical reservoirs using crude extracts bioassay with cladocerans

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

During a cyanobacterial bloom in a eutrophic environment, particularly at the end when decomposition occurs, toxic compounds such as the cyanotoxins and the lipopolysaccharides can be released in high concentrations into the water column damaging aquatic organisms. In this work, the effects of this release of toxic compounds during a cyanobacterial bloom were investigated. The acute and chronic toxicity of cyanobacterial crude extracts from two natural blooms in the Barra Bonita and Ibitinga reservoirs (Middle Tietê River, São Paulo State, Brazil) and of a toxic strain cultured in the laboratory were tested. The cladocerans Daphnia similis, Ceriodaphnia dubia and Ceriodaphnia silvestrii were used as test organisms. In the chronic toxicity tests, only a native cladoceran found in Brazilian freshwaters, Ceriodaphnia silvestrii, was used. Microcystins were detected in all cyanobacterial samples. The acute toxicity tests showed that the crude bloom material extract from the Ibitinga Reservoir (48-h EC50 values between 32.6 and 35.8 μg microcystin g−1 of freeze-dried material) exhibited higher toxicity to cladoceran than did the crude bloom material extract from Barra Bonita Reservoir (48-h EC50 values between 46.0 and 80.2 μg microcystin g−1 of freeze-dried material). The chronic toxicity test data showed that the three extracts reduced the fecundity of C. silvestrii, and the crude extract of Barra Bonita Reservoir bloom material also affected the survival of this cladoceran. Both acute and chronic tests effectively prognosticated possible changes in the cladoceran population, and probably other components of the biota due to cyanobacterial blooms in natural aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Associação Brasileira de Normas Técnicas (ABNT) (2003) NBR 13373: Ecotoxicologia aquática—Toxicidade crônica—Método de ensaio com Ceriodaphnia spp (Cladocera, Crustacea). Rio de Janeiro, 12 p

  • Associação Brasileira de Normas Técnicas (ABNT) (2004) NBR 12713: Ecotoxicologia aquática—Toxicidade aguda—Método de ensaio com Daphnia spp (Cladocera, Crustacea). Rio de Janeiro, 21 p

  • Aboal M, Puig MA (2005) Intracellular and dissolved microcystin in reservoirs of the river Segura basin, Murcia, SE Spain. Toxicon 45:509–518

    Article  CAS  Google Scholar 

  • Araújo R, Botta-Paschoal CMR, Silvério PF, Almeida FV, Rodrigues PF, Umbuzeiro GA, Jardim WF, Mozeto AA (2006) Application of toxicity identification evaluation to sediment in a highly contaminated water reservoir in southeastern Brazil. Environ Toxicol Chem 25:581–588

    Article  Google Scholar 

  • Bartram J, Carmichael WW, Chorus I, Jones G, Skulberg OM (1999) Introduction. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water—A guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 1–13

    Google Scholar 

  • Calijuri MC, Dos-Santos ACA, Jati S (2002) Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP—Brazil). J Plankton Res 4:617–634

    Article  Google Scholar 

  • Codd GA, Bell SG (1985) Eutrophication and toxic cyanobacteria in freshwaters. J Water Pollut Control 34:225–232

    Google Scholar 

  • Chu FS, Huang X, Wei RD (1990) Enzyme-linked immunosorbentd assay for microcystins in the blue–green algal blooms. J Assoc Offic Anal Chem 73:451–456

    CAS  Google Scholar 

  • DeMott WR, Zhang Q, Carmichael WW (1991) Effects of toxic cyanobacteria and purified toxins on survival and feeding of a copepod and three species of Daphnia. Limnol Oceanogr 36:1346–1357

    Article  CAS  Google Scholar 

  • Dietrich D, Hoeger S (2005) Guidance values for microcystins in water and cyanobacterial supplement products (blue–green algal supplements): a reasonable or misguided approach? Toxicol Appl Pharmacol 203:273–289

    Article  CAS  Google Scholar 

  • Domingos P, Rubim TK, Molica RJR, Azevedo SMFO, Carmichael WW (1998) First report of Microcystin production by picoplanktonic cyanobacteria isolalated from a northeasth brasilian drinking water supply. Environ Toxicol 14:31–35

    Article  Google Scholar 

  • Environment Canada (1990a). Biological test methods: acute lethality test using the Daphnia spp. Report EPS 1/RM/11 Environmental Canada Conservation and Protection, Ottawa, Ontario

  • Environment Canada (1990b). Biological test methods: reference method for determining acute lethality test of effluents to Daphnia magna Report EPS 1/RM/14 Environmental Canada, Conservation and Protection, Ottawa, Ontario

  • Fracácio R, Verani NF, Espíndola ELG, Rocha O, Rigolin-Sá O, Andrade CA (2003) Alterations on growth and gill morphology of Danio rerio (Pisces, Ciprinidae) exposed to the toxic sediments. Braz Arch Biol Techn 46:685–695

    Google Scholar 

  • Gilbert JJ (1990) Differential effects of Anabaena affinis on cladocerans and rotifers: mechanisms and implications for zooplankton community structure. Ecology 71:1727–1740

    Article  Google Scholar 

  • Gorham PR, McLachlan J, Hammer UT, Dim WK (1964) Isolation and culture of toxic strain of Anabaena flos-aquae (Lyngb.) de Bréb. Verh Int Ver Limnol 15:796–804

    Google Scholar 

  • Gulley DD, Boetter AM and Bergman HL (1991). TOXSTAT 3.3, Computer Program

  • Guo N, Xie P (2006) Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications. Environ Pollut 143:513–518

    Article  CAS  Google Scholar 

  • Gustafsson S, Hansson LA (2004) Development of tolerance against toxic cyanobacteria in Daphnia. Aquat Ecology 38:37–44

    Article  Google Scholar 

  • Hamilton MA, Russo RC, Thurfton RB (1977) Trimmed Spearman-Karber methods for estimating median lethal concentration in toxicity bioassay. Environ Sci Technol 11:714–719

    Article  CAS  Google Scholar 

  • Hanazato T (2000) Toxic cyanobacteria and the zooplankton community. In: Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC Press, Boca Raton, pp 79–98

    Google Scholar 

  • Hitzfeld B, Lampert C, Spaeth N, Mountfort D, Kaspar H, Dietrich D (2000) Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 38:1731–1748

    Article  CAS  Google Scholar 

  • Komárek J, Komárková-Legnerová J, Sant’anna CL, Azevedo MTP, Senna PAC (2002) Two common Microcystis species (Chroococcales, Cyanobacteria) from tropical America, including M. panniformis sp. nov. Crytogamie Algol 23:159–177

    Google Scholar 

  • Lampert W (1981) Inhibitory and toxic effects of blue–green algae on Daphnia. Int Rev der ges Hydrobiol 66:285–298

    Article  Google Scholar 

  • Oberemm A, Becker J, Codd GA, Steinberg C (1999) Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians. Environ Toxicol 14:77–88

    Article  CAS  Google Scholar 

  • Oliveira ACP, Magalhães VF, Soares RM, Azevedo SMFO (2005) Influence of drinking water composition on quantitation and biological activity of dissolved microcystin (cyanotoxin). Environ Toxicol 20:126–130

    Article  CAS  Google Scholar 

  • Pietsch C, Wiegand C, Amé MV, Nicklisch A, Wunderlin D, Pflugmacher S (2001) The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ Toxicol 16:535–542

    Article  CAS  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti R, Barreto V, Ward C, Preiser W, Poon G, Neild G, Codd G (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26

    Article  CAS  Google Scholar 

  • Reinikainen M, Ketola M, Jantunen M, Walls M (1995) Effects of Microcystis aeruginosa exposure and nutritional status on reproduction of Daphnia pulex. J Plankton Res 17:431–436

    Article  Google Scholar 

  • Rocha O, Matsumura-Tundisi T, Sampaio EV (1997) Phytoplankton and zooplankton community structure and production as related to trophic state in some Brazilian lakes and reservoirs. Vehr Int Verein Limnol Stuttgart 26:599–604

    Google Scholar 

  • Rohrlack T, Christoffersen K, Hansen PE, Zhang W, Zarnecki O, Henning M, Fastner J, Erhard M, Neilan BA, Kaebernick M (2003) Isolation, characterization, and quantitative analysis of Microviridin J, a new Microcystis metabolite toxic to Daphnia. J Chem Ecol 29:1757–1770

    Article  CAS  Google Scholar 

  • Soares RM, Magalhães VF, Azevedo SMFO (2004) Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquat Toxicol 70:1–10

    Article  CAS  Google Scholar 

  • Silvério PF, Fonseca AL, Botta-Paschoal CMR, Mozeto AA (2005) Release, bioavailability and toxicity of metals in lacustrine sediments: A case study of reservoirs and lakes in Southeast Brazil. Aquat Ecosyst Health Manage 8:313–122

    Article  CAS  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water–A guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 41–91

    Google Scholar 

  • Sotero-Santos RB, Souza e Silva CR, Verani NF, Nonaka KO, Rocha O (2006) Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tietê River, São Paulo, Brazil). Ecotoxicol Environ Safe 64:163–170

    Article  CAS  Google Scholar 

  • Thostrup L, Christoffersen K (1999) Accumulation of microcystin in Daphnia magna feeding on toxic Microcystis. Arch Hydrobiol 145:447–467

    CAS  Google Scholar 

  • Törökne AK, Laszlo E, Chorus I, Sivonen K, Barbosa FAR (2000) Cyanobacterial toxins detected by Thamnotoxkit: a double blind experiment. Environ Toxicol 15:549–553

    Article  Google Scholar 

  • Tundisi TM, Tundisi JG, Rocha O (2002) Zooplankton diversity in eutrophic systems and its relation to the occurrence of cyanophycean blooms. Verh Internat Verein Limnol Stuttgart 26:671–674

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1993). Methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA 600/4—91/002

  • Wynn-Williams DD (2000) Cyanobacteria in the Deserts–Life at the Limit? In: Whitton BA, Potts M (eds) The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 341–366

    Google Scholar 

Download references

Acknowledgements

We are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (Processos 03/00352-2, 01/13213-5 and 02/08341-7) for financial support and fellowships during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Barbosa Sotero-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okumura, D.T., Sotero-Santos, R.B., Takenaka, R.A. et al. Evaluation of cyanobacteria toxicity in tropical reservoirs using crude extracts bioassay with cladocerans. Ecotoxicology 16, 263–270 (2007). https://doi.org/10.1007/s10646-006-0126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-006-0126-9

Keywords

Navigation