Skip to main content

Advertisement

Log in

Ecology and life-history of Mesonauta festivus: biological traits of a broad ranged and abundant Neotropical cichlid

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The cichlid Mesonauta festivus is common and abundant among macrophyte stands along a large geographical range of the Amazonas and Paraná-Paraguay basins, in South America. This broad geographical range highlights the species’ dispersion ability, which can be attributed to specific biological and behavioral traits. However, the dispersion ability does not account for the broad geographical range alone, as the species must be able to establish populations in a range of environments, which include marginal areas of large rivers with different water types, floodplain lakes, and small terra-firme streams. In this work we investigated the specie’s ecology, biological traits and behavior in order to understand what and how its traits may have allowed it to attain such broad geographical range and aid in establishing local populations. Regarding its dispersion ability we stress the capability of swimming in the pelagic region, which is remarkable for this species and uncommon among Neotropical cichlids. Its vagility is high even when juveniles are under parental care. Regarding population establishment, the high environmental tolerance stands out, allowing the species to live under strikingly different abiotic conditions. In addition, the small size of first sexual maturation and its capability of spawning along the whole hydrologic cycle (apparently not associated to a specific environmental cue) may also facilitate the establishment of populations into new environments. Moreover, the behavior of mimicking dead leaves, which is mainly performed by juveniles, may lessen predation pressures. Under an eco-evolutionary perspective, the traits highlighted in this work may buffer selective pressures experienced by populations in different biotic and/or abiotic conditions, which may also favor the increasing of the geographical range by allowing the evolutionary lineage to remain similar even in disconnected and/or striking different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agostinho AA, Pelicice FM, Júlio HF Jr (2005) Introdução de espécies de peixes em águas continentais brasileiras: Uma síntese. In: Rocha O (ed) Espécies invasoras em águas doces—estudo de caso e propostas de manejo. Editora Universidade Federal de São Carlos, São Carlos, pp 11–23

    Google Scholar 

  • Almeida-Val VMF, Farias IP, Silva MNP, Duncan WP (1995) Biochemical adjustments to hypoxia in Amazon cichlids. Braz J Med Biochem Res 28:1257–1263

    CAS  Google Scholar 

  • Bates AE, McKelvie CM, Sorte CJ, Morley SA, Jones NA, Mondon JA, Bird TJ, Quinn G (2013) Geographical range, heat tolerance and invasion success in aquatic species. Proc R Soc B 280:20131958

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc B 275:1803–1809

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK (2011) A standardized terminology for describing reproductive development in fishes. Mar Coast Fish: Dyn, Manag, Ecosyst Sci 3:52–70

    Article  Google Scholar 

  • Byers JE (2000) Competition between two estuarine snails: implications for invasion of exotic species. Ecol 81:1225–1239

    Article  Google Scholar 

  • Chippari-Gomes AR, Gomes LC, Lopes NP, Val AL, Almeida-Val V (2005) Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. J Comp Physiol B 141:347–355

    CAS  Google Scholar 

  • Costa DI, Romagnoli CF, Carmo LLT, Ribas C, Leite GR, Zuanon J (2011) Ictiofauna associada a bancos de herbáceas aquáticas flutuantes na ilha da Marchantaria, rio Solimões, Amazônia Central, Brasil. Rev Colomb Cienc Anim 3(1):148–156

    Google Scholar 

  • Crampton WGR (2008) Ecology and life history of an Amazon floodplain cichlid: the discus fish Symphysodon (Perciformes: Cichlidae). Neotrop Ichthyol 6(4):599–612

    Article  Google Scholar 

  • de Almeida FF, Melo S (2009) Considerações limnológicas sobre um lago da planície de inundação amazônica (lago Catalão—Estado do Amazonas, Brasil). Acta Sci 31(4):387–395

    Google Scholar 

  • Dias MS, Toledo JJ, Jardim MM, Figueiredo FOGD, Cordeiro CLDO, Gomes ACS, Zuanon J (2011) Congruence between fish and plant assemblages in drifting macrophyte rafts in Central Amazonia. Hydrobiol 661(1):457–461

    Article  Google Scholar 

  • Drake JM (2007) Parental investment and fecundity, but not brain size, are associated with establishment success in introduced fishes. Funct Ecol 21:963–968

    Article  Google Scholar 

  • Duponchelle F, Lino F, Hubert N, Panfili J, Renno JF, Baras E, Torrico JP, Dugué R, Nuñez J (2007) Environment-related life-history trait variations of the red-bellied piranha Pygocentrus nattereri in two river basins of the Bolivian Amazon. J Fish Biol 71:1113–1134

    Article  Google Scholar 

  • Dutra DL (2010) Estrutura trófica da assembleia de peixes associada a bancos de herbáceas aquáticas em áreas de várzea ao longo do rio Amazonas. Instituto Nacional de Pesquisas da Amazônia. Master dissertation

  • González R (2006) Nota sobre la presencia del festivo Mesonauta festivus (Heckel, 1840) en el lago Gatún, Panamá. Tecnociencia 8(1):183–189

    Google Scholar 

  • Goodwin BJ, McAllister AJ, Fahrig L (1999) Predicting invasiveness of plant species based on biological information. Conserv Biol 13:422–426

    Article  Google Scholar 

  • Gross MR, Sargent RC (1985) The evolution of male and female parental care in fish. Amer Zool 25:807–822

    Google Scholar 

  • James FC, Johnston RF, Wamer NO, Niemi GJ, Boecklen WJ (1984) The Grinnellian niche of the wood. Am Nat 124(1):17–47

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Canadian Special Publish Fisheries Aquatic, Science, pp 110–127

    Google Scholar 

  • Killeen TJ, Schulenberg TS (1998) A biological assessment of Parque Nacional Noel Kempff Mercado, Bolivia. Conservation International, Washington

    Google Scholar 

  • King M (1995) Fisheries biology assessment and management. Fishing New Books, Massachusetts, 341

    Google Scholar 

  • Kullander SO (2003) Cichlidae (Cichlids). In: Reis RE, Kullander SO, Ferraris CJJ (eds) Checklist of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, pp 605–654

    Google Scholar 

  • Kullander SO, Silfvergrip MC (1991) Review of the South American cichlid genus Mesonauta Günther (Teleostei, Cichlidae) with description of two new species. Rev Suisse Zool 98(2):407–448

    Google Scholar 

  • Lehner PN (1998) Handbook of ethological methods. Cambridge University Press

  • Lima FCT, Ribeiro A (2011) Continental-scale tectonic controls of biogeography and ecology In: Albert JS and Reis RE (eds.) Historical biogeography of Neotropical freshwater fishes. University of California Press

  • Lodge DM (1993) Biological invasions: lessons for ecology. Trends Ecol Evol 8:133–137

    Article  CAS  PubMed  Google Scholar 

  • López-Fernández H, Arbour JH, Winemiller KO, Honeycutt RL (2013) Testing for ancient adaptive radiations in neotropical cichlid fishes. Evol 67(5):1321–1337

    Google Scholar 

  • Lowe MR, Wu W, Peterson MS, Brown-Peterson NJ, Slack WT, Schofield PJ (2012) Survival, growth and reproduction of non-native Nile tilapia II: fundamental niche projections and invasion potential in the Northern Gulf of Mexico. PLoS ONE 7:e41580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. Cambridge University Press, Cambridge, 382

    Book  Google Scholar 

  • Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc B 279:1033–1040

    Article  PubMed Central  PubMed  Google Scholar 

  • Lynch M, Gabriel W (1987) Environmental tolerance. Am Nat 129(2):283–303

    Article  Google Scholar 

  • Malcom JW (2011) Gene networks and metacommunities: dispersal differences can override adaptive advantage. PLoS ONE 6:e21541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCann K (1998) Density-dependent coexistence in fish communities. Ecology 79:2957–2967

    Article  Google Scholar 

  • Mérona B, Mol J, Vigouroux R, Chaves PT (2009) Phenotypic plasticity in fish life-history traits in two neotropical reservoirs: Petit-Saut Reservoir in French Guiana and Brokopondo Reservoir in Suriname. Neotrop Ichthyol 7(4):683–692

    Article  Google Scholar 

  • Moyle PB, Marchetti MP (2006) Predicting invasion success: freshwater fishes in California as a model. Bioscience 56(6):515–524

    Article  Google Scholar 

  • Olden JD, Poff NL, Bestgen A (2006) Life-history strategies predict fish invasions and extirpations in the Colorado River basin. Ecol Monogr 76(1):25–40

    Article  Google Scholar 

  • Prado KLL, Freitas CEC, Soares MGM (2010) Assembléias de peixes associadas às macróftas aquáticas em lagos de várzea do baixo rio Solimões. Biotemas 23(1):131–142

    Google Scholar 

  • Promislow DEL, Montgomerie R, Martin TE (1992) Mortality costs of sexual dimorphism in birds. Proc R Soc Lond B 250:143–150

    Article  Google Scholar 

  • Promislow DEL, Montgomerie R, Martin TE (1994) Sexual selection and survival in North American waterfowl. Evol 48:2045–2050

    Article  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3(349):361

    Google Scholar 

  • Röpke CP, Ferreira EF, Zuanon J (2013) Seasonal changes in the use of feeding resources by fish in stands of aquatic macrophytes in an Amazonian floodplain. Braz Environ Biol Fish. doi:10.1007/s10641-013-0160-4

    Google Scholar 

  • Sanches FHC, Miyai CA, Costa TM, Christofoletti RA, Volpato GL, Barreto RE (2012) Aggressiveness overcomes body-size effects in fights staged between invasive and native fish species with overlapping niches. PLoS ONE 7:e29746

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos CL, dos Santos IA, da Silva CJ (2009) Ecologia trófica de peixes ocorrentes em bancos de macróftas aquáticas na baia Caiçara, Pantanal Mato-Grossense. Rev Bras Biochem 7(40):473–476

    Google Scholar 

  • Sargent RC, Taylor PD, Gross MR (1987) Parental care and the evolution of egg size in fishes. Am Nat 129(1):32–46

    Article  Google Scholar 

  • Sazima I, Carvalho LN, Mendonça FP, Zuanon J (2006) Fallen leaves on the water-bed: diurnal camouflage of three night active fish species in an Amazonian streamlet. Neotrop Ichthyol 4(1):119–122

    Article  Google Scholar 

  • Schiesari L, Zuanon J, Azevedo-Ramos M, Garcia M, Gordo M, Messias M, Vieira EM (2003) Macrophyte rafts as dispersal vectors for fishes and amphibians in the lower Solimões River, Central Amazon. J Trop Ecol 19:333–336

    Article  Google Scholar 

  • Schlichting CL (2004) The role of phenotypic plasticity in diversification. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: Functional and conceptual approach. Oxford University Press, New York, pp 191–200

    Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology: Adaptation and environment. Cambridge University Press, Cambridge, 607

    Google Scholar 

  • Simpson AC (1951) The fecundity of the plaice. Fish Invest Lond Ser 2(17):27

    Google Scholar 

  • Sioli H (1951) Zum Alterungsprozess von Flüssen und Flusstypen im Amazonasgebiet. Arch Hydrobiol 45:267–283

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life history. Oxford University Press, New York

    Google Scholar 

  • Veltman CJ, Nee S, Crawley MJ (1996) Correlates of introduction success in exotic New Zealand birds. Am Nat, 542–557

  • Vila-Gispert A, Alcaraz C, García-Berthou M (2005) Life-history traits of invasive fish in small Mediterranean streams. Biol Invasions 7:107–111

    Article  Google Scholar 

  • Whittaker RG (1967) Gradient analysis of vegetation. Biol Rev 49:207–264

    Article  Google Scholar 

  • Winemiller KO (1989) Patterns of variation in life history among South American fishes in seasonal environments. Oecol 81:225–241

    Article  Google Scholar 

  • Zamprogno C, Andrade GV (1986) Camuflagem em jovens de pacu, Myleus sp. (Characiformes Myleinae). Rev Bras Biol 46(2):415–418

    Google Scholar 

  • Zaret TM, Paine RT (1973) Species introduction in a tropical lake. Science 182(4111):449–455

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to three anonymous reviewers who provided us with helpful advices. We thank Carolina Doria and Santo Antônio Energia S.A. for allowing the use of LIP-UNIR database, and Lucia Rapp Py-Daniel for kindly providing access to INPA’s fish collection database. We thank the National Council of Scientific and Technological Development (CNPq) for providing scholarship to THSP, JS and CPR and Coordination of Improvement of Higher Education Personnel (CAPES) for providing scholarship to DFC. JZ thanks CNPq for the productivity Grant (#307464/2009-1). The study was conducted according to rules established by INPA’s Ethics Committee (Protocol number: 015/2012). This is the contribution # 34 of the Projeto Igarapés.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele F. Campos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Leaf mimicry behavior by a resting Mesonauta festivus adult. (MPG 51208 kb)

Fig. A1

Size distribution of oocytes diameter of each ripe female of Mesonauta festivus (N = 17) from Catalão Lake. BF= Batch fecundity (DOC 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, T.H.S., Campos, D.F., Röpke, C.P. et al. Ecology and life-history of Mesonauta festivus: biological traits of a broad ranged and abundant Neotropical cichlid. Environ Biol Fish 98, 789–799 (2015). https://doi.org/10.1007/s10641-014-0314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-014-0314-z

Keywords

Navigation