Skip to main content
Log in

An analysis of the feasibility of using caudal vertebrae for ageing the spinetail devilray, Mobula japanica (Müller and Henle, 1841)

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Age assessment of Mobula japanica may be possible using the caudal vertebrae, below the origin of the dorsal fin. This is supported by the significant linear relationship found between disc width (DW) and centrum radius (CR, n = 55), the continuous record of growth bands in the vertebrae, the clarity to distinguish and count growth bands, and the precision of the band counts. Assuming an annual band formation, the preliminary assessment of the age suggests that M. japanica lives at least 14 years and has a low growth rate (K = 0.28 year−1). The minimum number of growth bands was one for spinetail devilrays with a 1,210–1,390 mm DW, while the maximum was 14 for a 2,300 mm DW devilray. While age validation is still required, results indicate the feasibility of the use of caudal vertebrae for age estimation. To provide robust estimates of validated age and growth for the spinetail devilray, the sampling coverage needed might imply an international cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bizzarro JJ, Smith WD, Hueter RE, Tyminski J, Márquez–Farías JF et al (2007) The status of shark and ray fishery resources in the Gulf of California: applied research to improve management and conservation. Moss Landing Marine Laboratories Technical Publication 2009–01

  • Bizzarro JJ, Smith WD, Hueter RE, Villavicencio-Garayzar CJ (2009) Activities and catch composition of artisanal elasmobranch fishing sites on the eastern coast of Baja California Sur, Mexico. Bull South Calif Acad Sci 108:137–151

    Google Scholar 

  • Cailliet GM, Goldman KJ (2004) Age determination and validation in chondrichthyan fishes. In: Carrier C, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 399–448

    Google Scholar 

  • Cailliet GM, Tanaka S (1990) Recommendations for research needed to better understand the age and growth of elasmobranchs. In: Pratt Jr HL, Gruber SH, Taniuchi T (eds) Elasmobranchs as living resources: advances in the biology, ecology, systematics and the status of the fisheries. NOAA Tech Rep NMFS 90, pp 505–507

  • Cailliet GM, Martin LK, Kusher D, Wolf P, Welden BA (1983) Techniques for enhancing vertebral bands in age estimation of California elasmobranchs. In: Prince E, Pulos L (eds) Proceedings of the International Workshop on Age Determination of Oceanic Pelagic Fishes: Tunas, Billfishes, and Sharks. NOAA Technical Report NMFS 8, pp 157–165

  • Cailliet GM, Smith WD, Mollet HF, Goldman KJ (2006) Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Environ Biol Fish 77:211–228

    Article  Google Scholar 

  • Campana MC (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242

    Article  Google Scholar 

  • Compagno LJV (1999) Endoskeleton. In: Hamlett WC (ed) Sharks, skates and rays: the biology of elasmobranchs fishes. The Johns Hopkins University Press, Baltimore and London, pp 69–92

    Google Scholar 

  • Cowley PD (1997) Age and growth of the blue stingray Dasyatis chrysonota chrysonota from the south-eastern cape coast of South Africa. S Afr J Mar Sci 18:31–38

    Article  Google Scholar 

  • Goldman K (2005) Age and growth of elasmobranch fishes. In: Musick JA, Bonfil R (eds) Managements techniques for elasmobranch fisheries. FAO Fish Tech Pap 474, Rome, pp 76–102

  • Hale LF, Lowe CG (2008) Age and growth of the round stingray Urobatis halleri at Seal Beach, California. J Fish Biol 73:510–523

    Article  Google Scholar 

  • Hoenig JM, Morgan MJ, Brown CA (1995) Analyzing differences between two age determination methods by tests of symmetry. Can J Fish Aquat Sci 52:364–368

    Article  Google Scholar 

  • Martin LK, Cailliet GM (1988) Age and growth determination of the Bat Ray, Myliobatis californica Gill, in Central California. Copeia 1988(3):762–773

    Article  Google Scholar 

  • Montes-Domínguez HM, González-Isáis M (2007) Contribution to the knowledge of anatomy of species of Genus Mobula Rafinesque 1810 (Chondricthyes: Mobulidae). Anat Rec 290:920–931

    Article  Google Scholar 

  • Neer JA, Cailliet GM (2001) Aspects of the life history of the Pacific electric ray, Torpedo californica (Ayres). Copeia 2001(3):842–847

    Article  Google Scholar 

  • Neer JA, Thompson BA (2005) Life history of the cownose ray, Rhinoptera bonasus, in the northern Gulf of Mexico, with comments on geographic variability in life history traits. Environ Biol Fish 73:321–331

    Article  Google Scholar 

  • Notarbartolo-di-Sciara G (1987a) A revisionary study of the genus Mobula (Chondrichthyes, Mobulidae), with the description of a new species. Zool J Linn Soc 91:1–19

    Article  Google Scholar 

  • Notarbartolo-di-Sciara G (1987b) Myliobatiform rays fished in the southern Gulf of California (Baja California Sur, México) (Chondrichthyes:Myliobatiformes). In: Memorias del V Simposium de Biología Marina. Universidad Autónoma de Baja California Sur, Baja California Sur, México, pp 109–115

  • Notarbartolo-di-Sciara G (1988) Natural history of the rays of the genus Mobula in the Gulf of California. Fish Bull 86:45–66

    Google Scholar 

  • Officer RA, Gason AS, Walker TI, Clement JG (1996) Sources of variation in counts of growth increments in vertebrae from gummy shark, Mustelus antarcticus, and school shark, Galeorhinus galeus: implications for age determination. Can J Fish Aquat Sci 53:1765–1777

    Article  Google Scholar 

  • Paulin CD, Habib G, Carey CL, Swanson PM, Voss GJ (1982) New records of Mobula japanica and Masturus lanceolatus, and further records of Luvaris imperialis (Pisces: Mobulidae, Molidae, Louvaridae) from New Zealand. NZ J Mar Fresh Res 16:11–17

    Article  Google Scholar 

  • Piercy AN, Ford TS, Levy LM, Snelson FF Jr (2006) Analysis of variability in vertebral morphology and growth ring counts in two Carcharhinid sharks. Environ Biol Fish 77:401–406

    Google Scholar 

  • Poder Ejecutivo Federal (2007) NOM-029-PESC-2006, Responsible Fisheries of Sharks and Rays, Specifications for their Use (in Spanish). Publicada en el Diario Oficial de la Federación el 14 de Febrero del 2007, Ciudad de México

  • Sampson L, Galván-Magaña F, De Silva-Dávila R, Aguíñiga-García S, O’Sullivan JB (2010) Diet and trophic position of the devil rays Mobula thurstoni and Mobula japanica as inferred from stable isotope analysis. J Mar Biol Assoc UK 90:969–976

    Article  Google Scholar 

  • Schwartz FJ (1983) Shark ageing methods and age estimation of Scalloped Hammerhead, Sphyrna lewini, and Dusky, Carcharhinus obscurus, sharks based on vertebral ring counts. In: Prince E and Pulos L (eds) Proceedings of the International Workshop on Age Determination of Oceanic Pelagic Fishes: Tunas, Billfishes, and Sharks. NOAA Technical Report NMFS 8, pp 157–166

  • Smith WD, Cailliet GM, Melendez EM (2007) Maturity and growth characteristics of a commercially exploited stingray, Dasyatis dipterura. Mar Freshw Res 58:54–66

    Article  Google Scholar 

  • Sulikowski JA, Morin MD, Suk SH, Howell WH (2003) Age and growth estimates of the winter skate (Leucoraja ocellata) in the western Gulf of Maine. Fish Bull 101:405–413

    Google Scholar 

  • Sulikowski JA, Kneebone J, Elzey S (2005) Age and growth estimates of the thorny skate (Amblyraja radiata) in the western Gulf of Maine. Fish Bull 103:161–168

    Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213

    Google Scholar 

  • White WT, Sommerville E (2010) Elasmobranchs of tropical marine ecosystems. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, pp 159–239

    Chapter  Google Scholar 

  • White WT, Clark TB, Smith WD, Bizzarro JJ (2006a) Mobula japanica. IUCN 2011. 2011 IUCN Red List of Threatened Species. http://www.iucnredlist.org. Accessed 29 August 2011

  • White WT, Giles J, Dharmadi PIC (2006b) Data on the bycatch fishery and reproductive biology of mobulid rays (Myliobatiformes) in Indonesia. Fish Res 82:65–73

    Article  Google Scholar 

Download references

Acknowledgments

We thank to the fisherman of the fishing camp “Punta Arenas de la Ventana”, Baja California Sur, Mexico, for allowing us to collect specimens and biological material. Thanks to F. Galvan and N. Serrano for their help in the field. Thanks to I. Mendez for their considerable help at field and laboratory. Thanks to A. Medellin, L. Castillo and C. Rodríguez for their help in laboratory. E. Díaz, J. M. Alfaro and E. Bravo provide technical support and improved the images. Thanks to G.M. Cailliet for reviewing a first version of this paper. Funding was provided by the project Historia Natural, Movimientos, Pesquería y Criaderos, Administración de Mantas Mobulidas en el Golfo de California of the Monterey Bay Aquarium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Sosa-Nishizaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuevas-Zimbrón, E., Sosa-Nishizaki, O., Pérez-Jiménez, J.C. et al. An analysis of the feasibility of using caudal vertebrae for ageing the spinetail devilray, Mobula japanica (Müller and Henle, 1841). Environ Biol Fish 96, 907–914 (2013). https://doi.org/10.1007/s10641-012-0086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-012-0086-2

Keywords

Navigation