Skip to main content
Log in

Spatial and temporal patterns of size-at-sex-change in two exploited coastal fish

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Fisheries are known to selectively remove larger and older individuals from wild populations. In sequential hermaphrodites, size-selectivity also becomes ‘sex-selectivity’, as the largest and oldest individuals of a sex-changing population primarily belong to one sex. Plasticity in size-at-sex-change is believed to circumvent the undesirable effects of gamete limitation and low effective population size. Here we present data of two commercially exploited sea bream species in different biogeographic regions, one protandrous (male-first) and one protogynous (female-first), respectively exhibiting spatial and temporal fluctuation in size-at-sex-change. By contrasting the patterns found against recent evidence of similar phenomena in other species, we discuss life-history strategies that favour reproductive success in different environmental scenarios. Size-at-sex-change may be for sequential hermaphrodites as important a life-history parameter as size-at-maturity or age-at-size. Consequently, the demographic consequences of altered size-at-sex-change should be considered explicitly in stock management and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Allsop DJ, West SA (2003) Constant relative age and size at sex change for sequentially hermaphroditic fish. J Evol Biol 16:921–929

    Article  PubMed  CAS  Google Scholar 

  • Allsop DJ, West SA (2004) Sex-ratio evolution in sex changing animals. Evolution 58:1019–1027

    PubMed  Google Scholar 

  • Alonzo SH, Mangel M (2004) The effects of size-selective fisheries on the stock dynamics of and sperm limitation in sex-changing fish. Fish Bull 102:1–13

    Google Scholar 

  • Alonzo SH, Mangel M (2005) Sex-change rules, stock dynamics, and the performance of spawning-per-recruit measures in protogynous stocks. Fish Bull 103:229–245

    Google Scholar 

  • Avise JC, Mank JE (2009) Evolutionary perspectives on hermaphroditism in fishes. Sex Dev 3:152–163

    Article  PubMed  CAS  Google Scholar 

  • Bauchot ML (1987) Poissons Osseux: sparidae. In: Fischer W, Bauchot ML, Schneider M (eds) Fiches FAO d’identification des espèces pour les besoins de la pêche (Révision, 1) – Méditerranée et Mer Noire. Zone de pêche 37. Volume II – Vertébrés. FAO, Rome, pp 1343–1376

    Google Scholar 

  • Buxton CD (1993) Life history changes in exploited reef fishes on the east coast of South Africa. Environ Biol Fish 36:47–63

    Article  Google Scholar 

  • Chopelet J (2010) Population genetics consequences of sex-change in marine fish. PhD Dissertation, University College Dublin

  • Chopelet J, Waples RS, Mariani S (2009) Sex change and the genetic structure of marine fish populations. Fish Fish 10:329–343

    Article  Google Scholar 

  • Coleman FC, Koenig CC, Collins LA (1996) Reproductive styles of shallow-water groupers (Pisces: Serranidae) in the eastern Gulf of Mexico and the consequences of fishing spawning aggregations. Environ Biol Fish 47:129–141

    Article  Google Scholar 

  • Conover DO, Munch SB (2002) Sustaining fisheries yields over evolutionary time scales. Science 297:94–96

    Article  PubMed  CAS  Google Scholar 

  • DeMartini EE, Friedlander AM, Holzwarth SR (2005) Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar Ecol Prog Ser 297:259–271

    Article  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • FAO (2009) FishSTAT Fishery Statistical Collections Global Capture Production. http://www.fao.org/fishery/statistics/global-capture-production

  • García-Rubies A, Zabala M (1990) Effects of total fishing prohibition on the rocky fish assemblages of Medes islands marine reserve, northwest Mediterranean. Sci Mar 54:317–328

    Google Scholar 

  • Garratt PA (1985) The Offshore Linefishery of Natal: I: exploited population structure of the sparids Chrysoblephus puniceus and Cheimerius nufar. Invest Rep Oceanogr Res Inst 62:1–18

    Google Scholar 

  • Garratt PA (1986) Protogynous hermaphroditism in the slinger, Chrysoblephus Puniceus (Gilchrist-and-Thompson, 1908) (Teleostei, Sparidae). J Fish Biol 28:297–306

    Article  Google Scholar 

  • Götz A, Kerwath SE, Attwood CG, Sauer WHH (2008) Effects of fishing on population structure and life history of roman Chrysoblephus laticeps (Sparidae). Mar Ecol Prog Ser 362:245–259

    Article  Google Scholar 

  • Govender A, Radebe PV (2000) Slinger (Chrysoblephus puniceus). In: Mann BQ (ed) Southern African marine linefish status reports. Oceanographic Research Institute Durban Special Publication 7:142–144

  • Gust N (2004) Variation in the population biology of protogynous coral reef fishes over tens of kilometers. Can J Fish Aquat Sci 61:205–218

    Article  Google Scholar 

  • Hamilton SL, Caselle JE, Standish JD, Schroeder DM, Love MS, Rosales-Casian JA, Sosa-Nishizaki O (2007) Size-selective harvesting alters life histories of a temperate sex-changing fish. Ecol Appl 17:2268–2280

    Article  PubMed  Google Scholar 

  • Hawkins JP, Roberts CM (2003) Effects of fishing on sex-changing Caribbean parrotfishes. Biol Cons 115:213–226

    Article  Google Scholar 

  • Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G (2006) Fishing elevates variability in the abundance of exploited species. Nature 443:859–862

    Article  PubMed  CAS  Google Scholar 

  • Huntsman GR, Schaaf WE (1994) Simulation of the impact of fishing on reproduction of a protogynous grouper, the graysby. N Am J Fish Manag 14:41–52

    Article  Google Scholar 

  • Jorgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, Ernande B, Gardmark A, Johnston F, Matsumura S, Pardoe H, Raab K, Silva A, Vainikka A, Dieckmann U, Heino M, Rijnsdorp AD (2005) Managing evolving fish stocks. Science 318:1247–1248

    Article  Google Scholar 

  • Kazancıoğlu E, Alonzo SH (2009) Costs of changing sex do not explain why sequential hermaphroditism is rare. Am Nat 173:327–336

    Article  PubMed  Google Scholar 

  • Kazancıoğlu E, Alonzo SH (2010) A comparative analysis of sex change in Labridae supports the size advantage hypothesis. Evolution 64:2254–2264

    PubMed  Google Scholar 

  • Kuparinen A, Merila J (2007) Detecting and managing fisheries-induced evolution. Trends Ecol Evol 22:652–659

    Article  PubMed  Google Scholar 

  • Linde M, Palmer M (2008) Testing Allsop and West’s size at sex change invariant within a fish species: a spurious ratio or a useful group descriptor? J Evol Biol 21:914–917

    Article  PubMed  CAS  Google Scholar 

  • Mann BQ, Buxton CD (1998) The reproductive biology of Diplodus sargus capensis and D. cervinus hottentotus (Sparidae) off the south-east Cape coast, South Africa. Cybium 22:31–47

    Google Scholar 

  • Milton DA, Die D, Tenakanai C, Swales S (1998) Selectivity for barramundi (Lates calcarifer) in the Fly River, Papua New Guinea: implications for managing gillnet fisheries on protandrous fishes. Mar Fres Res 49:499–506

    Article  Google Scholar 

  • Molloy PP, Goodwin NB, Cote IM, Gage MJG, Reynolds JD (2007) Predicting the effects of exploitation on male-first sex-changing fish. Anim Cons 10:30–38

    Article  Google Scholar 

  • Morato T, Afonso P, Lourinho P, Nash RDM, Santos RS (2003) Reproductive biology and recruitment of the white sea bream in the Azores. J Fish Biol 63:59–72

    Article  Google Scholar 

  • Munday PL, Buston PM, Warner RR (2006) Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol 21:89–95

    Article  PubMed  Google Scholar 

  • Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428:932–935

    Article  PubMed  CAS  Google Scholar 

  • Penney AJ, Mann-Lang JB, Van Der Elst RP, Wilke CG (1999) Long-term trends in catch and effort in the KwaZulu-Natal nearshore linefisheries. S Afr J Mar Sci 21:51–76

    Article  Google Scholar 

  • Ross RM (1990) The evolution of sex change mechanisms in fishes. Environ Biol Fish 29:81–93

    Article  Google Scholar 

  • Sadovy Y, Liu M (2008) Functional hermaphroditism in teleosts. Fish Fish 9:1–43

    Article  Google Scholar 

  • Sala-Bozano M (2009) Spatial variation in the genetics, ecology and life-history of a marine host-parasite interaction: the case of the striped sea bream Lithognathus mormyrus and its isopod parasite Ceratothoa italica. PhD Dissertation, University College Dublin

  • Sala-Bozano M, Ketmaier V, Mariani S (2009) Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol Ecol 18:4811–4826

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DY (1980) Serial female sex changes after simultaneous removal of males from the social groups of a coral reef fish. Science 209:1136–1137

    Article  PubMed  CAS  Google Scholar 

  • Warner RR (1975) Adaptive significance of sequential hermaphroditism in animals. Am Nat 109:61–82

    Article  Google Scholar 

  • Warner RR (1984) Mating behavior and hermaphroditism in coral reef fishes. Am Sci 72:128–136

    Google Scholar 

  • Warner RR (1988) Sex change and the size-advantage model. Trends Ecol Evol 3:133–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was inspired by the PhD theses of MSB and JC. Financial support was provided by the RFP scheme of Science Foundation Ireland and the EMBARK initiative of the Irish Research Council for Science, Engineering and Technology. We are grateful to Bruce Mann and Robin Waples for the numerous discussions on sex change, to two anonymous reviewers, and to the many Spanish, Italian and South African fishermen who helped us with sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mariani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, S., Sala-Bozano, M., Chopelet, J. et al. Spatial and temporal patterns of size-at-sex-change in two exploited coastal fish. Environ Biol Fish 96, 535–541 (2013). https://doi.org/10.1007/s10641-012-0039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-012-0039-9

Keywords

Navigation