Skip to main content
Log in

The neural control of feeding in elasmobranchs: A review and working model

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

A working model of the neural control of feeding in elasmobranchs is presented and summarized in graphic form. The model is based on a review of studies in sharks and batoids augmented by suggestions and comparisons from research in mammals and teleosts. The focal point of the model is a proposed Hypothalamic Feeding Area (HFA) that encompasses the medial periventricular zone in the inferior lobe and a small area immediately dorsal to it. Electrical stimulation in the HFA has evoked feeding in nurse sharks and neuropeptides and neurotransmitters known to influence feeding in mammals and teleosts have been localized immunocytochemically in the region in several elasmobranchs. The HFA of elasmobranchs appears to be analogous to and possibly homologous with ‘hypothalamic feeding centers” in bony fishes and tetrapods. Such “centers” are thought to integrate external and internal stimuli and control feeding in relation to available energy stores. The HFA’s strong olfactory connections in elasmobranchs are consistent with smell-induced feeding activities. In elasmobranchs, the HFA has reciprocal connections with the central pallium of the telencephalon, a region that processes visual, acoustic, mechanoreceptive and electroreceptive lateral line and possibly somatosensory information. These pathways may provide multisensory control in feeding. HFA connections with the cerebellum, brainstem and spinal cord most likely mediate hypothalamic co-ordination of the sensorimotor components of elasmobranch feeding. The review and model help to identify areas for suggested research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adage T, Scheurik AJW, de Boer SF, de Vries K, Konsman JP, Kuipers F, Adan RAH, Baskin DG, Schwartz MW, van Dijk G (2001) Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J Neurosci 21:3639–3645

    PubMed  CAS  Google Scholar 

  • Aronson LR (1963) The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In: Gilbert PW (ed) Sharks and survival. D.C. Heath Co., Boston, pp 165–241

    Google Scholar 

  • Arora S, Anubhuti (2006) Role of neuropeptides in appetite regulation and obesity—a review. Neuropeptides 40:375–401

    Article  PubMed  CAS  Google Scholar 

  • Batten TFC, Berry PA, Maqbool A, Moons L, Vandesande F (1993) Immunolocalization of catechoamine enzymes, serotonin, dopamine and l-dopa in the brain of Dicentrarchus labrax (Teleostei). Brain Res Bull 31:233–252

    Article  PubMed  CAS  Google Scholar 

  • Bernardis LL, Bellinger LL (1996) The lateral hypothalamic area revisited: ingestive behavior. Neurosci Biobehav Rev 20:189–287

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Bullock TH, Jorgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161:67–84

    Article  PubMed  CAS  Google Scholar 

  • Blouet C, Schwartz GJ (2010) Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 209:1–12

    Article  PubMed  CAS  Google Scholar 

  • Bodznick D, Northcutt RG (1984) An electrosensory area in the telencephalon of the little skate, Raja erinacea. Brain Res 298:117–124

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Northcutt RG (1983) Diencephalic and mesencephalic electrosensory centers of the clearnose skate Raja eglanteria. Am Zool 23:927

    Google Scholar 

  • Bruckmoser P, Dieringer N (1973) Evoked potentials in the primary and secondary olfactory projection areas of the forebrain in Elasmobranchia. J Comp Physiol 87:65–74

    Article  Google Scholar 

  • Bullock TH (1979) Processing of ampullary input in the brain: comparison of sensitivity and evoked responses among elasmobranchs and siluriform fishes. J Physiol Paris 75:397–407

    PubMed  CAS  Google Scholar 

  • Bullock TH, Corwin JT (1979) Acoustic evoked activity in the brain in sharks. J Comp Physiol 129:223–234

    Article  Google Scholar 

  • Carrera I, Molist P, Anadón R, Rodríguez-Moldes I (2008) Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. J Comp Neurol 511:804–831

    Article  PubMed  CAS  Google Scholar 

  • Chiba A (2001) Marked distributional difference of alpha-melanocyte-stimulating hormone (alpha-MSH)-like immunoreactivity in the brain between two elasmobranchs (Scyliorhinus torazame and Etmopterus brachyurus): an immunohistochemical study. Gen Comp Endocrinol 122:287–295

    Article  PubMed  CAS  Google Scholar 

  • Chiba A, Honma Y (1992) Distribution of neuropeptide Y-like immunoreactivity in the brain and hypophysis of the cloudy dogfish, Scyliorhinus torazame. Cell Tissue Res 268:453–461

    Article  PubMed  CAS  Google Scholar 

  • Chiba A, Oka S, Saitoh E (2002) Ontogenetic changes in neuropeptide Y-immunoreactive cerebrospinal fluid-contacting neurons in the hypothalamus of the cloudy dogfish, Scyliorhinus torazame (Elasmobranchii). Neurosci Lett 329:301–304

    Article  PubMed  CAS  Google Scholar 

  • Cohen DH, Duff TA, Ebbesson SOE (1973) Electrophysiological identification of a visual area in shark telencephalon. Science 182:492–494

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Austin MC, Fiske SM, Martin B, Consolo S, Berthold M, Langel U, Fisone G, Barfai T (1990) Activity of centrally administered galanin fragments on stimulation of feeding behavior and on galanin receptor binding in the rat hypothalamus. J Neurosci 10:3695–3700

    PubMed  CAS  Google Scholar 

  • de Pedro N, Pinillos ML, Valenciano AI, Alonso-Bedate M, Delgado MJ (1998) Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19:505–511

    Article  PubMed  Google Scholar 

  • de Pedro N, Martínez-Álvarez R, Delgado MJ (2006) Acute and chronic leptin reduces food intake and body weight in goldfish (Carassius auratus). J Endocrinol 188:513–520

    Article  PubMed  CAS  Google Scholar 

  • Demski LS (1973) Feeding and aggressive behavior evoked by hypothalamic stimulation in a cichlid fish. Comp Biochem Physiol 44A:685–692

    Article  Google Scholar 

  • Demski LS (1977) Electrical stimulation of the shark brain. Am Zool 17:487–500

    Google Scholar 

  • Demski LS (1981) Hypothalamic mechanisms of feeding in fishes. In: Laming P (ed) Brain mechanisms of behaviour in lower vertebrates. Society for Experimental Biology Seminar Series, Cambridge University Press, pp. 225–237

  • Demski LS (1983) Behavioral effects of electrical stimulation of the brain. In: Davis RE, Northcutt RG (eds) Fish neurobiology and behavior vol. 2. University of Michigan Press, Ann Arbor, pp 317–359

    Google Scholar 

  • Demski LS (1992) Chromatomotor systems in teleosts and cephalopods: a levels oriented analysis of convergent systems. Brain Behav & Evol 40:141–156

    Article  CAS  Google Scholar 

  • Demski LS, Knigge KM (1971) The telencephalon and hypothalamus of the bluegill (Lepomis macrochirus): evoked feeding, aggressive and reproductive behavior with representative frontal sections. J Comp Neurol 143:1–16

    Article  PubMed  CAS  Google Scholar 

  • Demski LS, Evan AP, Saland LC (1975) The structure of the inferior lobe of the teleost hypothalamus. J Comp Neurol 161:483–498

    Article  PubMed  CAS  Google Scholar 

  • Demski LS, Beaver JA, Sudberry JJ, Custis JR (1997) GnRH systems in cartilaginous fishes. In: Parhar IS, Sakuma Y (eds) GnRH neurons: gene to behavior. Brain Suppan, Tokyo, pp 123–143

    Google Scholar 

  • Dryer L, Graziadei PPC (1994) Projections of the olfactory bulb in an elasmobranch fish, Sphyrna tiburo: segregation of inputs in the telencephalon. Anat Embryol 190:563–572

    Article  PubMed  CAS  Google Scholar 

  • Ebbesson SOE, Heimer L (1970) Projections of the olfactory tract fibers in the nurse shark (Ginglymostoma cirratum). Brain Res 17:47–55

    Article  PubMed  CAS  Google Scholar 

  • Ekström P, van Veen T (1984) Distribution of 5-hydroxytrptamine (serotonin) in the brain of the teleost Gasterosteus aculeatus L. J Comp Neurol 266:307–320

    Article  Google Scholar 

  • Evan AP, Demski LS, Saland LC (1976a) The lateral recess of the third ventricle in teleosts: an EM and Golgi study. Cell and Tissue Res 166:521–530

    Article  CAS  Google Scholar 

  • Evan AP, Saland LC, Demski LS (1976b) The inferior lobe of the shark hypothalamus: a scanning and transmission EM study. J Morph 150:59–78

    Article  PubMed  CAS  Google Scholar 

  • Fiebig E, Bleckmann H (1989) Cell groups afferent to the telencephalon in a cartilaginous fish (Platyrhinoidis triseriata). a WGA-HRP study. Neurosci Lett 105:57–62

    Article  PubMed  CAS  Google Scholar 

  • Forlano PM, Maruska KP, Sower SA, King JA, Tricas TC (2000) Differential distribution of gonadotropin-releasing hormone-immunreactive neurons in the stingray brain: functional and evolutionary considerations. Gen Comp Endocrinol 118:226–248

    Article  PubMed  CAS  Google Scholar 

  • Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934

    Article  PubMed  Google Scholar 

  • Graeber RC, Schroeder DM, Jane JA, Ebbesson SOE (1978) Visual discrimination following partial telencephalic ablations in nurse sharks (Ginglymostoma cirratum). J Comp Neurol 180:325–344

    Article  PubMed  CAS  Google Scholar 

  • Grimm RJ (1959) Feeding behavior and electrical stimulation of the brain of Carassius auratus. Science 131:162

    Article  Google Scholar 

  • Grundlach AL (2002) Galanin/GALP and galanin receptors: role in central control of feeding, body weight/obesity and reproduction? Eur J Pharmacol 440:255–268

    Article  Google Scholar 

  • Guijarro AI, Delgado MJ, Pinillos ML, López-Patiño MA, Alonso-Bedate, de Pedro N (1999) Galanin and β-endorphin as feeding regulators in cyprinds: effect of temperature. Aquaculture Res 30:483–489

    Article  Google Scholar 

  • Hayle TH (1973) A comparative study of the spinal projections to the brain (except cerebellum) in three classes of poikiothermic vertebrates. J Comp Neurol 149:463–476

    Article  PubMed  CAS  Google Scholar 

  • Healey EG (1957) The nervous system. In: Brown ME (ed) The physiology of fishes vol 2. Academic, New York, pp 1–119

    Google Scholar 

  • Heisler LK, Crowley MA, Kishi T, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Zigman JM, Cone RD, Elmquist JK (2003) Central serotonin and melanocortin pathways regulating energy homeostasis. Ann NY Acad Sci 994:169–174

    Article  PubMed  CAS  Google Scholar 

  • Heithaus MR (2004) Predator-prey relationships. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC, Boca Raton, pp 487–521

    Chapter  Google Scholar 

  • Hofmann MH (2001) The role of the fish telencephalon in sensory information processing. In: Kapoor BG, Hara TJ (eds) Sensory biology of jawed fishes; new insights. Science, Enfield, pp 255–274

    Google Scholar 

  • Hofmann MH, Northcutt RG (2008) Organization of major telencephalic pathways in an elasmobranch, the thornback ray Platyrhinoidis triseriata. Brain, Behav Evol 72:307–325

    Article  Google Scholar 

  • Hoskins LJ, Xu M, Volkoff H (2008) Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus). Horm Behav 54:379–385

    Article  PubMed  CAS  Google Scholar 

  • Hueter RE, Mann DA, Maruska KP, Sisneros JA, Demski LS (2004) Sensory biology of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC, Boca Raton, pp 350–358

    Google Scholar 

  • Kajiura SM, Cornett AD, Yopak KE (2010) Sensory adaptations to the environment: electroreceptors as a case study. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II: biodiversity, adaptive physiology, and conservation. CRC, Boca Raton, pp 393–433

    Chapter  Google Scholar 

  • Kalmijn AD (2000) Detection and processing of electromagnetic and near-field acoustic signals in elasmobranch fishes. Phil Trans Royal Soc London Ser B, Biol Sci 355:1135–1141

    Article  CAS  Google Scholar 

  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Hypothalamic appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    Article  PubMed  CAS  Google Scholar 

  • Karamürsel S, Bullock TH (1994) Dynamics of event-related potentials to trains of light and dark flashes: responses to missing and extra stimuli in elasmobranch fish. Electroenceph Clin Neurophysiol 90:461–471

    Article  PubMed  Google Scholar 

  • Kawakoshi A, Kaiya H, Riley LG, Hirano T, Grau EG, Miyazato M, Hosoda H, Kangawa K (2007) Identification of a ghrelin-like peptide in two species of shark, Sphyrna lewini and Carcharhinus melanopterus. Gen Comp Endocrinol 151:259–268

    Article  PubMed  CAS  Google Scholar 

  • King JA, Millar RP (1992) Evolution of gonadotropin-releasing hormones. Trends Endocrinol Metab 3:339–346

    Article  PubMed  CAS  Google Scholar 

  • King JA, Millar RP (1995) Evolutionary aspects of gonadotropin-releasing hormone and its receptor. Cell Mol Neurobiol 15:5–23

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Kamijo M, Kageyama H, Uchiyama M, Matsuda K (2009) Neuronal relationship between orexin-A- and neuropeptide Y-induced orexigenic actions in goldfish. Neuropeptides 43:63–71

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz SF, Alexander JT (1988) Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol Psychiatry 44:851–864

    Article  Google Scholar 

  • Lethimonier C, Madigou T, Muñoz J-A, Lareyre J-J, Kah O (2004) Evolutionary aspects of GnRHs, GnRH neuronal systems and GnRH receptors in teleost fish. Gen Comp Endocrinol 135:1–16

    Article  PubMed  CAS  Google Scholar 

  • Levine AS, Billington CJ (1989) Opiods are they regulators of feeding? Ann NY Acad Sci 575:209–219

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Volkoff H, Narnaware Y, Bernier NJ, Peyon P, Peter RE (2000) Brain regulation of feeding behavior and food intake in fish. Comp Biochem Physiol A 126:415–434

    CAS  Google Scholar 

  • Lisney TJ, Yopak KE, Montgomery JC, Collin SP (2008) Variation in brain organization and cerebellar foliation in chondrichthyans: batoids. Brain Behav Evolution 72:262–282

    Article  Google Scholar 

  • Luiten PGM (1981) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum): II ascending thalamo-telencephalic connections. J Comp Neurol 196:539–548

    Article  PubMed  CAS  Google Scholar 

  • MacDonald E, Volkoff H (2009) Neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) in winter skate (Raja ocellata): CDNA cloning, tissue distribution and mRNA expression responses to fasting. Gen Comp Endocrinol 161:252–261

    Article  PubMed  CAS  Google Scholar 

  • Magni P, Dozio E, Massimilano R, Celolli F, Masini MA, Prato P, Broccoli M, Mambro A, Massimo M, Strollo F (2009) Feeding behavior in mammals and humans. Ann NY Acad Sci 1163:221–232

    Article  PubMed  CAS  Google Scholar 

  • Marvin E, Scrogin K, Dudás B (2010) Morphology and distribution of neurons expressing serotonin 5-HT1A receptors in rat hypothalamus and the surrounding diencephalic and telencephalic areas. J Chem Neuroanat 39:235–241

    Article  PubMed  CAS  Google Scholar 

  • Matsuda (2009) Recent advances in the regulation of feeding behavior by neuropeptides in fish. Ann NY Acad Sci 1163:241–250

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Shimakura S-I, Miura T, Maruyama K, Uchiyama M, Kawauchi H, Shioda S, Takahashi A (2007) Feeding-induced changes of melanin-concentrating hormone (MCH)-like immunoreactivity in the goldfish brain. Cell Tissue Res 328:375–382

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Nakamura K, Shimakura S-I, Miura T, Kageyama H, Uchiyama M, Shioda S, Ando H (2008) Inhibitory effect of gonadotropin-releasing hormone II on food intake in the goldfish, Carassius auratus. Horm Behav 54:83–89

    Article  PubMed  CAS  Google Scholar 

  • McVey DC, Rittschof D, Mannon PJ, Vigna SR (1996) Localization and characterization of neuropeptide Y/ peptide YY receptors in the brain of the smooth dogfish (Mustelis canis). Regul Pept 61:167–173

    Article  PubMed  CAS  Google Scholar 

  • Mennigen JA, Harris EA, Chang JP, Moon TW, Trudeau VL (2009) Fluoxetine affects weight gain and expression of feeding peptides in the female goldfish brain. Regul Pept 155:99–109

    Article  PubMed  CAS  Google Scholar 

  • Molist P, Rodríguez-Moldes I, Anadón R (1992) Immunocytochemical and electron-microscopic study of the elasmobranch nucleus sacci vasculosi. Cell Tissue Res 270:395–404

    Article  Google Scholar 

  • Motta PJ (2004) Prey capture behavior and feeding mechanics of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC, Boca Raton, pp 165–202

    Chapter  Google Scholar 

  • Narnaware YK, Peyon PP, Lin X, Peter RE (2000) Regulation of food intake by neuropeptide Y in goldfish. Am J Physiol, Regul Integr Comp Physiol 279:R1025–R1034

    CAS  Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks skates and rays. Office of Naval Research, Arlington, pp 117–193

    Google Scholar 

  • Northcutt RG (1989) Brain variation and phylogenetic trends in elasmobranch fishes. J Exp Zool Suppl 2:83–100

    Article  PubMed  CAS  Google Scholar 

  • Peter RE (1979) The brain and feeding behavior. In: Hoar WS, Randell DJ, Brett JR (eds) Fish physiology vol. VIII. Academic, New York, pp 121–159

    Google Scholar 

  • Platt CJ, Bullock TH, Czéh G, Kovačević N, Konjević Dj K, Gojković M (1974) Comparison of electroreceptor, mechanoreceptor, and optic evoked potentials in the brain of some rays and sharks. J Comp Physiol 95:323–355

    Article  Google Scholar 

  • Powell KA, Baker BI (1987) Ultrastructural demonstration that melanin-concentrating hormone-like and α-melanocyte stimulating hormone-like immunoreactive molecules co-exist in the same neurosecretory granules. Neurosci Lett 268–274

  • Riley LG, Walker AP, Dorough CP, Schwandt SE, Grau EG (2009) Glucose regulates ghrelin, neuropeptide Y, and the GH/IGF-I axis in the tilapia. Comp Biochem Physiol A 154:541–546

    Article  CAS  Google Scholar 

  • Ritchie TC, Livingston CA, Hughes MG, McAdoo DJ, Leonard RB (1983) The distribution of serotonin in the CNS of an elasmobranch fish: immunocytochemical studies in the Atlantic stingray, Dasyatis sabina. J Comp Neurol 221:429–443

    Article  PubMed  CAS  Google Scholar 

  • Roberts MG, Savage GE (1978) Effects of hypothalamic lesions on food intake in the goldfish (Carassius auratus). Brain Behav Evol 15:150–164

    Article  PubMed  CAS  Google Scholar 

  • Savage GE, Roberts MG (1975) Behavioural effects of electrical stimulation of the hypothalamus of the goldfish (Carassius auratus). Brain Behav Evol 12:42–56

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Rissman EF (2008) Gonadotropin-releasing hormone II: a multi-purpose neuropeptide. Integr Comp Biol 48:588–595

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer J, Lowe D (1984) Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch: evidence for two parallel electrosensory pathways. Neurosci Lett 44:317–322

    Article  PubMed  CAS  Google Scholar 

  • Sherwood NM, Lovejoy DA (1993) Gonadotropin-releasing hormone in cartilaginous fishes: structure, location, and transport. Environ Biol Fish 38:197–208

    Article  Google Scholar 

  • Silverstein JT, Plisetskaya EM (2000) The effects of NPY and insulin on food intake regulation in fish. Am Zool 40:296–308

    Article  CAS  Google Scholar 

  • Smeets WJAJ (1981) Efferent tectal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 195:13–23

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ (1982) The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 205:139–152

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ (1983) The secondary olfactory connections in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 218:334–344

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ (1998) Cartilaginous fishes. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1, Springer-Verlag. Berlin Heidelberg, New York, pp 551–654

    Google Scholar 

  • Smeets WJAJ, Boord RL (1985) Connections of the lobus inferior hypothalami of the clearnose skate Raja eglanteria (Chondrichthyes). J Comp Neurol 234:380–392

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ, Northcutt RG (1987) At least one thalamotelencephalic pathway in cartilaginous fishes projects to the medial pallium. Neurosci Lett 78:277–282

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ, Timerick SJB (1981) Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 202:473–491

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes: structural and functional correlations. Springer-Verlag, Berlin Heidelberg, New York

    Book  Google Scholar 

  • Stevenson JAF (1969) Neural control of food and water intake. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Charles C. Thomas, Springfield, pp 524–621

    Google Scholar 

  • ten Donkelaar HJ, Nicholson C (1998) Notes on techniques. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates, vol 1, Springer-Verlag. Berlin Heidelberg, New York, pp 551–654

    Google Scholar 

  • Tester AL (1963a) Olfaction, gustation, and the common chemical sense in sharks. In: Gilbert PW (ed) Sharks and survival. D.C. Heath Co., Boston, pp 255–282

    Google Scholar 

  • Tester AL (1963b) The role of olfaction in shark predation. Pac Sci 17:145–170

    Google Scholar 

  • Timerick SJB, Roberts BL, Paul DH (1992) Brainstem neurons projecting to different levels of the spinal cord of the dogfish Scyliorhinus canicula. Brain Behav Evol 39:93–100

    Article  PubMed  CAS  Google Scholar 

  • Vallarino M (1985) Occurrence of ß-endorphin-like immunoreactivity in the brain of the teleost, Boops boops. Gen Comp Endocrinol 60:63–69

    Article  PubMed  CAS  Google Scholar 

  • Vallarino M, Danger JM, Fasolo A, Pelletier G, Saint-Pierre S, Vaudry H (1988a) Distribution and characterization of neuropeptide Y in the brain of an elasmobranch fish. Brain Res 448:67–76

    Article  PubMed  CAS  Google Scholar 

  • Vallarino M, Delbende C, Jegou S, Vaudry H (1988b) Alpha-melanocyte-stimulating hormone (α-MSH) in the brain of the cartilaginous fish: immunocytological localization and biochemical characterization. Peptides 9:899–907

    Article  PubMed  CAS  Google Scholar 

  • Vallarino M, Andersen AC, Delbende C, Ottonello I, Eberle AN, Vaudry H (1989a) Melanin-concentrating hormone (MCH) immunoreactivity in the brain and pituitary of the dogfish Scyliorhinus canicula: colocalization with alpha-melanocyte-stimulating hormone (α-MSH) in hypothalamic neurons. Peptides 10:375–382

    Article  PubMed  CAS  Google Scholar 

  • Vallarino M, Tranchand Bunel D, Delbende C, Ottonello I, Vaudry H (1989b) Distribution of the pro-opiomelanocortin-derived peptides, alpha-melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), and beta-endorphin in the brain of the dogfish Scyliorhinus canicula: an immunocytological study. J Exp Zool Suppl 2:112–121

    Article  Google Scholar 

  • Vallarino M, Feuilloley M, Vandesande F, Vaudry H (1991) Immunochemical mapping of galanin-like immunoreactivity in the brain of the dogfish Scyliorhinus canicula. Peptides 12:351–357

    Article  PubMed  CAS  Google Scholar 

  • Volkoff H (2006) The role of neuropeptide Y, orexins, cocaine and amphetamine-related transcript, cholecystokinin, amylin and leptin in the regulation of feeding in fish. Comp Biochem Physiol A 144:325–331

    Article  CAS  Google Scholar 

  • Volkoff H, Peter RE (2001) Interactions between orexin A, NPY and galanin in the control of food intake of the goldfish, Carassius auratus. Regul Pept 101:59–72

    Article  PubMed  CAS  Google Scholar 

  • Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19

    Article  PubMed  CAS  Google Scholar 

  • Volkoff H, Xu M, MacDonald E, Hoskins L (2009) Aspects of the hormonal regulation of appetite in fish with emphasis on goldfish, Atlantic cod and winter flounder: notes on actions and responses to nutritional, environmental and reproductive changes. Comp Biochem Physiol A 153:8–12

    Google Scholar 

  • Wetherbee BM, Cortés E (2004) Food Consumption and Feeding Habits. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC, Boca Raton, pp 225–246

    Chapter  Google Scholar 

  • Wright DE, Demski LS (1991) The midbrain GnRH-system in sharks and rays. J Comp Neurol 307:49–56

    Article  PubMed  CAS  Google Scholar 

  • Wright DE, Demski LS (1993) Gonadotropin hormone-releasing hormone (GnRH) pathways and reproductive control in elasmobranchs. Environ Biol Fish 38:209–218

    Article  Google Scholar 

  • Yada T, Moriyama S, Suzuki Y, Azuma T, Takahashi A, Hirose S, Naito N (2002) Relationships between obesity and metabolic hormones in the “cobalt” variant of rainbow trout. Gen Comp Endocrinol 28:36–43

    Article  CAS  Google Scholar 

  • Yamamoto N (2003) Three gonadotropin-releasing hormone neuronal groups with special reference to teleosts. Anat Sci Int 78:139–155

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S, Honma Y, Sana Y (1990) Immunohistochemical demonstration of serotonin neuron system in the central nervous system of the Japanese dogfish, Scyliorhinus torazame (Chondrichthyes). J Hirnforsch 31:385–397

    PubMed  CAS  Google Scholar 

  • Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69:280–300

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Support for the author’s studies on elasmobranchs has been provided by the United States Atomic Energy Commission, the National Science Foundation and the Florsheim Chair endowment to the New College Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo S. Demski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demski, L.S. The neural control of feeding in elasmobranchs: A review and working model. Environ Biol Fish 95, 169–183 (2012). https://doi.org/10.1007/s10641-011-9827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-011-9827-x

Keywords

Navigation